Direct approach to the problem of strong local minima in calculus of variations

The paper introduces a general strategy for identifying strong local minimizers of variational functionals. It is based on the idea that any variation of the integral functional can be evaluated directly in terms of the appropriate parameterized measures. We demonstrate our approach on a problem of W1,∞ sequential weak-* local minima — a slight weakening of the classical notion of strong local minima. We obtain the first quasiconvexity-based set of sufficient conditions for W1,∞ sequential weak-* local minima.

[1]  On homotopy conditions and the existence of multiple equilibria in finite elasticity , 1997 .

[2]  Jr. László Székelyhidi The Regularity of Critical Points of Polyconvex Functionals , 2004 .

[3]  A. Taheri Local Minimizers and Quasiconvexity – the Impact of Topology , 2005 .

[4]  P. Pedregal Parametrized measures and variational principles , 1997 .

[5]  J. Ball A version of the fundamental theorem for young measures , 1989 .

[6]  Sufficiency theorems for local minimizers of the multiple integrals of the calculus of variations , 2001, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[7]  J. Ball Some Open Problems in Elasticity , 2002 .

[8]  Jan Kristensen,et al.  Partial Regularity of Strong Local Minimizers in the Multi-Dimensional Calculus of Variations , 2003 .

[9]  L. Evans Measure theory and fine properties of functions , 1992 .

[10]  Irene Fonseca,et al.  Analysis of Concentration and Oscillation Effects Generated by Gradients , 1998 .

[11]  J. Ball Convexity conditions and existence theorems in nonlinear elasticity , 1976 .

[12]  WEIERSTRASS CONDITION FOR THE GENERAL BASIC VARIATIONAL PROBLEM , 1995 .

[13]  Charles B. Morrey,et al.  QUASI-CONVEXITY AND THE LOWER SEMICONTINUITY OF MULTIPLE INTEGRALS , 1952 .

[14]  Bernard Dacorogna,et al.  Quasiconvexity and relaxation of nonconvex problems in the calculus of variations , 1982 .

[15]  A. Aftalion Progress in Nonlinear Differential Equations and their Applications , 2006 .

[16]  Gerhard Eduard Moritz Armsen GEODESIC FIELDS IN THE CALCULUS-OF-VARIATIONS FOR MULTIPLE-INTEGRALS , 1973 .

[17]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[18]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[19]  T. O’Neil Geometric Measure Theory , 2002 .

[20]  Luc Tartar,et al.  Compensated compactness and applications to partial differential equations , 1979 .

[21]  R. Kohn,et al.  Optimal design and relaxation of variational problems, III , 1986 .

[22]  F. Murat,et al.  Remarks on Chacon’s biting lemma , 1989 .

[23]  Hermann Weyl,et al.  Geodesic Fields in the Calculus of Variation for Multiple Integrals , 1935 .

[24]  N. Meyers QUASI-CONVEX1TY AND LOWER SEMI-CONTINUITY OF MULTIPLE VARIATIONAL INTEGRALS OF ANY ORDER , 2010 .

[25]  Irene Fonseca,et al.  Lower semicontinuity of surface energies , 1992, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[26]  S. Muller,et al.  Convex integration for Lipschitz mappings and counterexamples to regularity , 2003 .

[27]  Théophile De Donder,et al.  Théorie invariantive du calcul des variations , 1936 .

[28]  Pablo Pedregal,et al.  Characterizations of young measures generated by gradients , 1991 .

[29]  Leonida Tonelli Fondamenti di calcolo delle variazioni , 1921 .

[30]  Jerrold E. Marsden,et al.  Quasiconvexity at the boundary, positivity of the second variation and elastic stability , 1984 .

[31]  Remarks on quasiconvexity and stability of equilibria for variational integrals , 1992 .

[32]  Pablo Pedregal,et al.  Gradient Young measures generated by sequences in Sobolev spaces , 1994 .

[33]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[34]  Magnus R. Hestenes,et al.  Sufficient Conditions for Multiple Integral Problems in the Calculus of Variations , 1948 .

[35]  L. C. Young On approximation by polygons in the calculus of variations , 1933 .