Computations of multi-fluid flows

Abstract Full numerical simulations of three-dimensional flows of two or more immiscible fluids of different densities and viscosities separated by a sharp interface with finite surface tension are discussed. The method used is based on a finite difference approximation of the full Navier-Stokes equations and explicit tracking of the interface between the fluids. Preliminary simulations of the Rayleigh-Taylor instability and the motion of bubbles are shown.

[1]  D. W. Moore,et al.  The rise and distortion of a two‐dimensional gas bubble in an inviscid liquid , 1989 .

[2]  B. J. Daly Numerical Study of Two Fluid Rayleigh‐Taylor Instability , 1967 .

[3]  David H. Sharp,et al.  Front Tracking Applied to Rayleigh–Taylor Instability , 1986 .

[4]  J. Boris,et al.  New Directions in Computational Fluid Dynamics , 1989 .

[5]  S. Narayanan,et al.  Coalescence of two bubbles rising in line at low reynolds numbers , 1974 .

[6]  Bart J. Daly,et al.  A technique for including surface tension effects in hydrodynamic calculations , 1969 .

[7]  A. Acrivos,et al.  On the shape of a gas bubble in a viscous extensional flow , 1976, Journal of Fluid Mechanics.

[8]  G. Tryggvason,et al.  A front-tracking method for viscous, incompressible, multi-fluid flows , 1992 .

[9]  D. Youngs,et al.  Three-dimensional numerical simulation of turbulent mixing by Rayleigh-Taylor instability , 1991 .

[10]  A. Fogelson,et al.  A fast numerical method for solving the three-dimensional Stokes' equations in the presence of suspended particles , 1988 .

[11]  D. Sharp An overview of Rayleigh-Taylor instability☆ , 1984 .

[12]  Elaine S. Oran,et al.  Surface tension and viscosity with Lagrangian hydrodynamics on a triangular mesh. Memorandum report , 1988 .

[13]  C. Pozrikidis,et al.  The instability of a moving viscous drop , 1990, Journal of Fluid Mechanics.

[14]  L. G. Leal,et al.  A theoretical study of the motion of a viscous drop toward a fluid interface at low Reynolds number , 1989, Journal of Fluid Mechanics.

[15]  Martin E. Weber,et al.  In-line interaction of a pair of bubbles in a viscous liquid , 1980 .

[16]  Andreas Acrivos,et al.  THE BREAKUP OF SMALL DROPS AND BUBBLES IN SHEAR FLOWS * , 1983 .

[17]  J. Ottino Unity and diversity in mixing: Stretching, diffusion, breakup, and aggregation in chaotic flows , 1991 .

[18]  J. F. Harper,et al.  The Motion of Bubbles and Drops Through Liquids , 1972 .

[19]  S. Churchill,et al.  Viscous flows : the practical use of theory , 1988 .

[20]  K. Udell,et al.  Axisymmetric creeping motion of drops through circular tubes , 1990, Journal of Fluid Mechanics.

[21]  L. Fauci,et al.  A computational model of aquatic animal locomotion , 1988 .

[22]  N. Nevers,et al.  Bubble coalescence in viscous fluids , 1971 .

[23]  Gretar Tryggvason,et al.  Computations of three‐dimensional Rayleigh–Taylor instability , 1990 .

[24]  R. Clift,et al.  Bubbles, Drops, and Particles , 1978 .

[25]  L. G. Leal,et al.  The stability of drop shapes for translation at zero Reynolds number through a quiescent fluid , 1989 .

[26]  L. G. Leal,et al.  Numerical solution of free-boundary problems in fluid mechanics. Part 1. The finite-difference technique , 1984, Journal of Fluid Mechanics.

[27]  S. G. Yiantsios,et al.  Rayleigh–Taylor instability in thin viscous films , 1989 .

[28]  Philip H. Todd,et al.  Numerical estimation of the curvature of surfaces , 1986 .

[29]  Jerzy M. Floryan,et al.  Numerical Methods for Viscous Flows With Moving Boundaries , 1989 .

[30]  Stephen H. Brecht,et al.  Vortex-in-cell simulations of buoyant bubbles in three dimensions , 1989 .

[31]  Gad Hetsroni,et al.  Handbook of multiphase systems , 1982 .

[32]  L. G. Leal,et al.  Numerical solution of free-boundary problems in fluid mechanics. Part 2. Buoyancy-driven motion of a gas bubble through a quiescent liquid , 1984, Journal of Fluid Mechanics.

[33]  L. G. Leal,et al.  Numerical solution of free-boundary problems in fluid mechanics. Part 3. Bubble deformation in an axisymmetric straining flow , 1984, Journal of Fluid Mechanics.

[34]  James M. Hyman,et al.  Numerical methods for tracking interfaces , 1984 .

[35]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[36]  Juan A. Zufiria,et al.  Vortex‐in‐cell simulation of bubble competition in a Rayleigh–Taylor instability , 1988 .

[37]  Qiang Zhang,et al.  A numerical study of bubble interactions in Rayleigh–Taylor instability for compressible fluids , 1990 .

[38]  Howard A. Stone,et al.  Relaxation and breakup of an initially extended drop in an otherwise quiescent fluid , 1989, Journal of Fluid Mechanics.

[39]  J. M. Rallison The Deformation of Small Viscous Drops and Bubbles in Shear Flows , 1984 .

[40]  J. M. Rallison A numerical study of the deformation and burst of a viscous drop in general shear flows , 1981, Journal of Fluid Mechanics.

[41]  J. Parlange,et al.  Spherical-Cap Bubbles , 1973 .

[42]  Christopher R. Anderson,et al.  A VORTEX METHOD FOR FLOWS WITH SLIGHT DENSITY VARIATIONS , 1985 .

[43]  G. Tryggvason Numerical simulations of the Rayleigh-Taylor instability , 1988 .

[44]  David S. Dandy,et al.  Buoyancy-driven motion of a deformable drop through a quiescent liquid at intermediate Reynolds numbers , 1989, Journal of Fluid Mechanics.

[45]  Pierre J. Carreau,et al.  Bubble velocity and coalescence in viscoelastic liquids , 1986 .

[46]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .