Classical and Bayesian Inference in Neuroimaging: Theory
暂无分享,去创建一个
Karl J. Friston | K. J. Friston | J. Ashburner | W. Penny | C. Phillips | S. Kiebel | C. Phillips | S. Kiebel | W. Penny | J. Ashburner
[1] B. Efron,et al. Stein's Estimation Rule and Its Competitors- An Empirical Bayes Approach , 1973 .
[2] D. Harville. Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems , 1977 .
[3] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[4] B. Efron,et al. Stein's Paradox in Statistics , 1977 .
[5] D. Rubin,et al. Estimation in Covariance Components Models , 1981 .
[6] J. Ware,et al. Random-effects models for longitudinal data. , 1982, Biometrics.
[7] J. Copas. Regression, Prediction and Shrinkage , 1983 .
[8] R. Okafor. Maximum likelihood estimation from incomplete data , 1987 .
[9] R. Kass,et al. Approximate Bayesian Inference in Conditionally Independent Hierarchical Models (Parametric Empirical Bayes Models) , 1989 .
[10] L. Joseph,et al. Bayesian Statistics: An Introduction , 1989 .
[11] L. Fahrmeir,et al. Multivariate statistical modelling based on generalized linear models , 1994 .
[12] K. Worsley,et al. Local Maxima and the Expected Euler Characteristic of Excursion Sets of χ 2, F and t Fields , 1994, Advances in Applied Probability.
[13] Karl J. Friston,et al. Statistical parametric maps in functional imaging: A general linear approach , 1994 .
[14] Xavier Descombes,et al. fMRI Signal Restoration Using a Spatio-Temporal Markov Random Field Preserving Transitions , 1998, NeuroImage.
[15] Michael I. Jordan. Learning in Graphical Models , 1999, NATO ASI Series.
[16] Geoffrey E. Hinton,et al. A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants , 1998, Learning in Graphical Models.
[17] Carl E. Rasmussen,et al. Bayesian Modelling of fMRI lime Series , 1999, NIPS.
[18] B. Everitt,et al. Mixture model mapping of brain activation in functional magnetic resonance images , 1999, Human brain mapping.
[19] N V Hartvig,et al. Spatial mixture modeling of fMRI data , 2000, Human brain mapping.
[20] Jens Ledet Jensen,et al. Spatial mixture modelling of fMRI data , 2000 .
[21] Karl J. Friston,et al. Systematic noise regularisation for linear inverse solution of the source localisation problem in EEG , 2001, NeuroImage.
[22] Karl J. Friston,et al. Classical and Bayesian Inference in Neuroimaging: Applications , 2002, NeuroImage.
[23] Alan C. Evans,et al. A General Statistical Analysis for fMRI Data , 2000, NeuroImage.
[24] Karl J. Friston,et al. Systematic Regularization of Linear Inverse Solutions of the EEG Source Localization Problem , 2002, NeuroImage.
[25] Eric R. Ziegel,et al. Multivariate Statistical Modelling Based on Generalized Linear Models , 2002, Technometrics.