Chow groups are finite dimensional, in some sense
暂无分享,去创建一个
[1] C. Mazza. Schur functors and motives , 2004, 1010.3932.
[2] Y. Andre. Motifs de dimension finie , 2004 .
[3] Shungen Kimura. A cohomological characterization of Alexander schemes , 1999 .
[4] Angelo Vistoli,et al. Chow rings of infinite symmetric products , 1996 .
[5] V. Voevodsky. A nilpotence theorem for cycles algebraically equivalent to zero , 1995 .
[6] Kimura Shun-ichi. Fractional intersection and bivariant theory , 1992 .
[7] J. Murre,et al. Motivic decomposition of abelian schemes and the Fourier transform. , 1991 .
[8] Angelo Vistoli. Intersection theory on algebraic stacks and on their moduli spaces , 1989 .
[9] A. Beauville. Sur l'anneau de chow d'une variété abélienne , 1986 .
[10] A. A. Rojtman. The Torsion of the Group of 0-Cycles Modulo Rational Equivalence , 1980 .
[11] S. Bloch. Some elementary theorems about algebraic cycles on abelian varieties , 1976 .
[12] A. Kas,et al. Zero cycles on surfaces with $p_g = 0$ , 1976 .
[13] A. Shermenev. The motif of an Abelian variety , 1974 .
[14] Donald C. Knutson,et al. Lambda-Rings and the Representation Theory of the Symmetric Group , 1973 .
[15] Donald Knutson. The representation theory of groups , 1973 .
[16] D. Mumford. Rational equivalence of 0-cycles on surfaces , 1969 .
[17] R. Schwarzenberger. Jacobians and symmetric products , 1963 .