Surrogate Models for Mixed Discrete-Continuous Variables

Large-scale computational models have become common tools for analyzing complex man-made systems. However, when cou- pled with optimization or uncertainty quantification methods in order to conduct extensive model exploration and analysis, the computational expense quickly becomes intractable. Furthermore, these models may have both continuous and discrete parameters. One common approach to mitigating the computational expense is the use of response surface approximations. While well developed for models with continuous pa- rameters, they are still new and largely untested for models with both continuous and discrete parameters. In this work, we describe and in- vestigate the performance of three types of response surfaces developed for mixed-variable models: Adaptive Component Selection and Shrinkage Operator, Treed Gaussian Process, and Gaussian Process with Special Correlation Functions. We focus our efforts on test problems with a small number of parameters of interest, a characteristic of many physics-based engineering models. We present the results of our studies and offer some insights regarding the performance of each response surface approxima- tion method.

[1]  Curtis B. Storlie,et al.  Variable Selection in Bayesian Smoothing Spline ANOVA Models: Application to Deterministic Computer Codes , 2009, Technometrics.

[2]  Timothy W. Simpson,et al.  Design and Analysis of Computer Experiments in Multidisciplinary Design Optimization: A Review of How Far We Have Come - Or Not , 2008 .

[3]  Chong Gu Smoothing Spline Anova Models , 2002 .

[4]  Harvey M. Wagner,et al.  Global Sensitivity Analysis , 1995, Oper. Res..

[5]  R. Gramacy,et al.  Categorical Inputs, Sensitivity Analysis, Optimization and Importance Tempering with tgp Version 2, an R Package for Treed Gaussian Process Models , 2010 .

[6]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[7]  R. Tibshirani,et al.  Regression shrinkage and selection via the lasso: a retrospective , 2011 .

[8]  R. Tibshirani,et al.  Generalized Additive Models , 1986 .

[9]  J. Copas,et al.  Applied Linear Statistical Models, 2nd Edition. , 1987 .

[10]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[11]  Valder Steffen,et al.  Ensemble of Surrogates: a Framework based on Minimization of the Mean Integrated Square Error , 2008 .

[12]  Curtis B. Storlie,et al.  A Locally Adaptive Penalty for Estimation of Functions With Varying Roughness , 2010 .

[13]  Peter Z. G. Qian Sliced Latin Hypercube Designs , 2012 .

[14]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[15]  S. Rahman Reliability Engineering and System Safety , 2011 .

[16]  R. Rebonato,et al.  The Most General Methodology to Create a Valid Correlation Matrix for Risk Management and Option Pricing Purposes , 2011 .

[17]  G. Wahba Spline models for observational data , 1990 .

[18]  Jon C. Helton,et al.  Multiple predictor smoothing methods for sensitivity analysis: Description of techniques , 2008, Reliab. Eng. Syst. Saf..

[19]  Søren Nymand Lophaven,et al.  DACE - A Matlab Kriging Toolbox , 2002 .

[20]  Bruce E. Ankenman,et al.  A RESPONSE SURFACE TEST BED , 2000 .

[21]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[22]  Zongmin Wu,et al.  Compactly supported positive definite radial functions , 1995 .

[23]  R. Haftka,et al.  Multiple surrogates: how cross-validation errors can help us to obtain the best predictor , 2009 .

[24]  Michael H. Kutner Applied Linear Statistical Models , 1974 .

[25]  R. Rebonato,et al.  The most general methodology for creating a valid correlation matrix for risk management and option pricing purposes , 2000 .

[26]  Hao Helen Zhang,et al.  Component selection and smoothing in multivariate nonparametric regression , 2006, math/0702659.

[27]  Peter Z. G. Qian,et al.  Gaussian Process Models for Computer Experiments With Qualitative and Quantitative Factors , 2008, Technometrics.

[28]  Laura Painton Swiler,et al.  A user's guide to Sandia's latin hypercube sampling software : LHS UNIX library/standalone version. , 2004 .

[29]  Michael S. Eldred,et al.  DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. Version 5.0, user's reference manual. , 2010 .

[30]  H. Chipman,et al.  Bayesian CART Model Search , 1998 .

[31]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[32]  Brian J Reich,et al.  Surface Estimation, Variable Selection, and the Nonparametric Oracle Property. , 2011, Statistica Sinica.

[33]  Michael S. Eldred,et al.  DAKOTA , A Multilevel Parallel Object-Oriented Framework for Design Optimization , Parameter Estimation , Uncertainty Quantification , and Sensitivity Analysis Version 4 . 0 User ’ s Manual , 2006 .

[34]  Robert B. Gramacy,et al.  Classification and Categorical Inputs with Treed Gaussian Process Models , 2009, J. Classif..

[35]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[36]  Jon C. Helton,et al.  Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models , 2009, Reliab. Eng. Syst. Saf..

[37]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[38]  Michael G. Schimek,et al.  Smoothing and Regression: Approaches, Computation, and Application , 2000 .

[39]  Robert B. Gramacy,et al.  Ja n 20 08 Bayesian Treed Gaussian Process Models with an Application to Computer Modeling , 2009 .

[40]  Hao Helen Zhang,et al.  Component selection and smoothing in smoothing spline analysis of variance models -- COSSO , 2003 .

[41]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .

[42]  Shiyu Zhou,et al.  A Simple Approach to Emulation for Computer Models With Qualitative and Quantitative Factors , 2011, Technometrics.

[43]  Saad T. Bakir,et al.  Nonparametric Regression and Spline Smoothing , 2000, Technometrics.

[44]  A. Berlinet,et al.  Reproducing kernel Hilbert spaces in probability and statistics , 2004 .

[45]  V. Barnett,et al.  Applied Linear Statistical Models , 1975 .

[46]  Robert B. Gramacy,et al.  Gaussian processes and limiting linear models , 2008, Comput. Stat. Data Anal..