Surrogate Models for Mixed Discrete-Continuous Variables
暂无分享,去创建一个
Xu Xu | Herbert Lee | Curtis B. Storlie | Laura Painton Swiler | Peter Z. G. Qian | Patricia D. Hough | Peter Qian | P. Hough | L. Swiler | C. Storlie | Xu Xu | Herbert Lee
[1] Curtis B. Storlie,et al. Variable Selection in Bayesian Smoothing Spline ANOVA Models: Application to Deterministic Computer Codes , 2009, Technometrics.
[2] Timothy W. Simpson,et al. Design and Analysis of Computer Experiments in Multidisciplinary Design Optimization: A Review of How Far We Have Come - Or Not , 2008 .
[3] Chong Gu. Smoothing Spline Anova Models , 2002 .
[4] Harvey M. Wagner,et al. Global Sensitivity Analysis , 1995, Oper. Res..
[5] R. Gramacy,et al. Categorical Inputs, Sensitivity Analysis, Optimization and Importance Tempering with tgp Version 2, an R Package for Treed Gaussian Process Models , 2010 .
[6] Leo Breiman,et al. Classification and Regression Trees , 1984 .
[7] R. Tibshirani,et al. Regression shrinkage and selection via the lasso: a retrospective , 2011 .
[8] R. Tibshirani,et al. Generalized Additive Models , 1986 .
[9] J. Copas,et al. Applied Linear Statistical Models, 2nd Edition. , 1987 .
[10] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[11] Valder Steffen,et al. Ensemble of Surrogates: a Framework based on Minimization of the Mean Integrated Square Error , 2008 .
[12] Curtis B. Storlie,et al. A Locally Adaptive Penalty for Estimation of Functions With Varying Roughness , 2010 .
[13] Peter Z. G. Qian. Sliced Latin Hypercube Designs , 2012 .
[14] Steven A. Orszag,et al. CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .
[15] S. Rahman. Reliability Engineering and System Safety , 2011 .
[16] R. Rebonato,et al. The Most General Methodology to Create a Valid Correlation Matrix for Risk Management and Option Pricing Purposes , 2011 .
[17] G. Wahba. Spline models for observational data , 1990 .
[18] Jon C. Helton,et al. Multiple predictor smoothing methods for sensitivity analysis: Description of techniques , 2008, Reliab. Eng. Syst. Saf..
[19] Søren Nymand Lophaven,et al. DACE - A Matlab Kriging Toolbox , 2002 .
[20] Bruce E. Ankenman,et al. A RESPONSE SURFACE TEST BED , 2000 .
[21] Sonja Kuhnt,et al. Design and analysis of computer experiments , 2010 .
[22] Zongmin Wu,et al. Compactly supported positive definite radial functions , 1995 .
[23] R. Haftka,et al. Multiple surrogates: how cross-validation errors can help us to obtain the best predictor , 2009 .
[24] Michael H. Kutner. Applied Linear Statistical Models , 1974 .
[25] R. Rebonato,et al. The most general methodology for creating a valid correlation matrix for risk management and option pricing purposes , 2000 .
[26] Hao Helen Zhang,et al. Component selection and smoothing in multivariate nonparametric regression , 2006, math/0702659.
[27] Peter Z. G. Qian,et al. Gaussian Process Models for Computer Experiments With Qualitative and Quantitative Factors , 2008, Technometrics.
[28] Laura Painton Swiler,et al. A user's guide to Sandia's latin hypercube sampling software : LHS UNIX library/standalone version. , 2004 .
[29] Michael S. Eldred,et al. DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. Version 5.0, user's reference manual. , 2010 .
[30] H. Chipman,et al. Bayesian CART Model Search , 1998 .
[31] Ron Kohavi,et al. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.
[32] Brian J Reich,et al. Surface Estimation, Variable Selection, and the Nonparametric Oracle Property. , 2011, Statistica Sinica.
[33] Michael S. Eldred,et al. DAKOTA , A Multilevel Parallel Object-Oriented Framework for Design Optimization , Parameter Estimation , Uncertainty Quantification , and Sensitivity Analysis Version 4 . 0 User ’ s Manual , 2006 .
[34] Robert B. Gramacy,et al. Classification and Categorical Inputs with Treed Gaussian Process Models , 2009, J. Classif..
[35] Saltelli Andrea,et al. Global Sensitivity Analysis: The Primer , 2008 .
[36] Jon C. Helton,et al. Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models , 2009, Reliab. Eng. Syst. Saf..
[37] Wei-Yin Loh,et al. Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..
[38] Michael G. Schimek,et al. Smoothing and Regression: Approaches, Computation, and Application , 2000 .
[39] Robert B. Gramacy,et al. Ja n 20 08 Bayesian Treed Gaussian Process Models with an Application to Computer Modeling , 2009 .
[40] Hao Helen Zhang,et al. Component selection and smoothing in smoothing spline analysis of variance models -- COSSO , 2003 .
[41] Peter Craven,et al. Smoothing noisy data with spline functions , 1978 .
[42] Shiyu Zhou,et al. A Simple Approach to Emulation for Computer Models With Qualitative and Quantitative Factors , 2011, Technometrics.
[43] Saad T. Bakir,et al. Nonparametric Regression and Spline Smoothing , 2000, Technometrics.
[44] A. Berlinet,et al. Reproducing kernel Hilbert spaces in probability and statistics , 2004 .
[45] V. Barnett,et al. Applied Linear Statistical Models , 1975 .
[46] Robert B. Gramacy,et al. Gaussian processes and limiting linear models , 2008, Comput. Stat. Data Anal..