Affine Point Processes: Approximation and Efficient Simulation

We establish a central limit theorem and a large deviations principle for affine point processes, which are stochastic models of correlated event timing widely used in finance and economics. These limit results generate closed-form approximations to the distribution of an affine point process. They also facilitate the construction of an asymptotically optimal importance sampling estimator of tail probabilities. Numerical tests illustrate our results.

[1]  D. Daley Asymptotic properties of stationary point processes with generalized clusters , 1972 .

[2]  D. Lépingle,et al.  Sur l'intégrabilité uniforme des martingales exponentielles , 1978 .

[3]  P. Brémaud Point Processes and Queues , 1981 .

[4]  P. Brémaud Point processes and queues, martingale dynamics , 1983 .

[5]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[6]  P. Protter Stochastic integration and differential equations , 1990 .

[7]  Ward Whitt,et al.  The Fourier-series method for inverting transforms of probability distributions , 1992, Queueing Syst. Theory Appl..

[8]  Niels Keiding,et al.  Statistical Models Based on Counting Processes , 1993 .

[9]  S. Meyn,et al.  Stability of Markovian processes III: Foster–Lyapunov criteria for continuous-time processes , 1993, Advances in Applied Probability.

[10]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[11]  K. Singleton,et al.  Specification Analysis of Affine Term Structure Models , 1997 .

[12]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[13]  Clive G. Bowsher Modelling Security Market Events in Continuous Time: Intensity Based, Multivariate Point Process Models , 2003 .

[14]  D. Duffie,et al.  Affine Processes and Application in Finance , 2002 .

[15]  K. Giesecke,et al.  Credit Contagion and Aggregate Losses , 2004 .

[16]  S. Meyn,et al.  Spectral theory and limit theorems for geometrically ergodic Markov processes , 2002, math/0209200.

[17]  Patrick Cheridito,et al.  Market Price of Risk Specifications for Affine Models: Theory and Evidence , 2003 .

[18]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[19]  Patrick Cheridito,et al.  Market price of risk speci-fications for a ne models: theory and evidence , 2004 .

[20]  C. Heyde,et al.  On the martingale property of stochastic exponentials , 2004, Journal of Applied Probability.

[21]  Bruno Lang,et al.  A Comparison of the Moore and Miranda Existence Tests , 2004, Computing.

[22]  P. Moral,et al.  Genealogical particle analysis of rare events , 2005, math/0602525.

[23]  M. Yor,et al.  Equivalent and absolutely continuous measure changes for jump-diffusion processes , 2005, math/0508450.

[24]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[25]  Sachin Jain,et al.  Efficient Importance Sampling for Reduced Form Models in Credit Risk , 2006, Proceedings of the 2006 Winter Simulation Conference.

[26]  C. Bordenave,et al.  Large Deviations of Poisson Cluster Processes , 2007, 0704.1463.

[27]  W. Runggaldier,et al.  Large portfolio losses: A dynamic contagion model , 2007, 0704.1348.

[28]  Xiongzhi Chen Brownian Motion and Stochastic Calculus , 2008 .

[29]  P. D. Pra,et al.  Heterogeneous credit portfolios and the dynamics of the aggregate losses , 2008, 0806.3399.

[30]  K. Giesecke,et al.  Premia for Correlated Default Risk , 2008 .

[31]  Peter W. Glynn,et al.  Rare event simulation for a generalized Hawkes process , 2009, Proceedings of the 2009 Winter Simulation Conference (WSC).

[32]  P. Glasserman,et al.  Saddlepoint approximations for affine jump-diffusion models , 2009 .

[33]  R. Carmona,et al.  Particle Methods For The Estimation Of Credit Portfolio Loss Distributions , 2010 .

[34]  Sean P. Meyn,et al.  Most likely paths to error when estimating the mean of a reflected random walk , 2009, Perform. Evaluation.

[35]  Yacine Ait-Sahalia,et al.  Modeling Financial Contagion Using Mutually Exciting Jump Processes , 2010 .

[36]  Kay Giesecke,et al.  Exact and Efficient Simulation of Correlated Defaults , 2010, SIAM J. Financial Math..

[37]  Kay Giesecke,et al.  Affine Point Processes and Portfolio Credit Risk , 2010, SIAM J. Financial Math..

[38]  Shilin Zhu,et al.  Monte Carlo Algorithms for Default Timing Problems , 2011, Manag. Sci..

[39]  Damir Filipovi'c,et al.  Density Approximations for Multivariate Affine Jump-Diffusion Processes , 2011, 1104.5326.

[40]  P. Embrechts,et al.  Multivariate Hawkes processes: an application to financial data , 2011, Journal of Applied Probability.

[41]  Justin A. Sirignano,et al.  LARGE PORTFOLIO ASYMPTOTICS FOR LOSS FROM DEFAULT , 2011, 1109.1272.

[42]  Alexander D. Shkolnik,et al.  Importance Sampling for Event Timing Models , 2011 .

[43]  Lingjiong Zhu Process-level large deviations for nonlinear Hawkes point processes , 2011, 1108.2431.

[44]  Xiaowei Zhang Computing rare-event probabilities for affine models andgeneral state space Markov processes , 2011 .

[45]  Kay Giesecke,et al.  Sequential Importance Sampling and Resampling for Dynamic Portfolio Credit Risk , 2012, Oper. Res..

[46]  Jakša Cvitanić,et al.  The Law of Large Numbers for self-exciting correlated defaults , 2012 .

[47]  E. Bacry,et al.  Some limit theorems for Hawkes processes and application to financial statistics , 2013 .

[48]  Justin A. Sirignano,et al.  Fluctuation Analysis for the Loss from Default , 2013, 1304.1420.

[49]  Lingjiong Zhu,et al.  Central Limit Theorem for Nonlinear Hawkes Processes , 2012, Journal of Applied Probability.

[50]  Sean P. Meyn,et al.  Large deviations for the empirical mean of an M/M/1 queue , 2013, Queueing Syst. Theory Appl..

[51]  K. Spiliopoulos,et al.  Default clustering in large portfolios: Typical events. , 2011, 1104.1773.

[52]  Alexander D. Shkolnik,et al.  Optimal Importance Sampling of Default Losses , 2014 .

[53]  Konstantinos Spiliopoulos,et al.  Default Clustering in Large Pools: Large Deviations , 2013, SIAM J. Financial Math..