Scanning tunnelling microscopy studies of metal surfaces

Scanning tunnelling microscopy (STM) has proved to be a fascinating and powerful technique in the field of surface science. The fact that sets the STM apart from most other surface sensitive techniques is its ability to resolve the structure of surfaces on an atomic scale, that is atom-by-atom, and furthermore its ability to study the dynamics of surface processes. This article presents a survey of recent STM studies of well characterized single crystal metal surfaces under ultra-high vacuum conditions. It particularly addresses STM investigations of clean metal surfaces, adsorbates on metal surfaces, adsorbate-induced restructuring of metal surfaces, chemical reactions on metal surfaces, metal-on-metal growth and finally studies of electron confinement and quantum size effects on metal surfaces.

[1]  C. Bai,et al.  A MODEL OF BONDING BETWEEN OXYGEN AND METAL SURFACES , 1997 .

[2]  Changyan Sun Spectral sensitivity of the VLEED to the bonding geometry and the potential barrier of the O-Cu(001) surface , 1997 .

[3]  Zhang,et al.  Atomic processes in low temperature Pt-dendrite growth on Pt(111). , 1996, Physical review letters.

[4]  Berndt,et al.  Tip-assisted diffusion on Ag(110) in scanning tunneling microscopy. , 1996, Physical review letters.

[5]  Jacobsen,et al.  Apparent barrier height in scanning tunneling microscopy revisited. , 1996, Physical review letters.

[6]  Bott,et al.  New approach for determination of diffusion parameters of adatoms. , 1996, Physical review letters.

[7]  Clarke,et al.  Quantitative scanning tunneling microscopy at atomic resolution: Influence of forces and tip configuration. , 1996, Physical review letters.

[8]  Sautet,et al.  Shape of molecular adsorbates in STM images: A theoretical study of benzene on Pt(111). , 1996, Physical review. B, Condensed matter.

[9]  Y. Okawa,et al.  STM investigation of the reaction of AgO added rows with CO2 on a Ag(110) surface , 1995 .

[10]  I. Stensgaard,et al.  STM investigation of the coadsorption and reaction of oxygen and hydrogen on Ni(110) , 1995 .

[11]  I. Stensgaard,et al.  THE REACTION OF CARBON DIOXIDE WITH AN OXYGEN PRECOVERED AG(110) SURFACE , 1995 .

[12]  I. Stensgaard,et al.  An STM study of carbon-induced structures on Ni(111): evidence for a carbidic-phase clock reconstruction , 1995 .

[13]  Murray,et al.  Mechanisms of initial alloy formation for Pd on Cu(100) studied by STM. , 1995, Physical review. B, Condensed matter.

[14]  Davies,et al.  Tunneling spectroscopy of bcc (001) surface states. , 1995, Physical review letters.

[15]  K. Wong,et al.  Structural details for the Cu(110)-c(6×2)-O surface determined by tensor LEED , 1995 .

[16]  Laurits Højgaard Olesen,et al.  Quantized conductance in atom-sized wires between two metals. , 1995, Physical review. B, Condensed matter.

[17]  Rasmussen,et al.  Atomic-scale determination of misfit dislocation loops at metal-metal interfaces. , 1995, Physical review letters.

[18]  Kern,et al.  Diffusion-limited aggregation with active edge diffusion. , 1995, Physical review letters.

[19]  U. Landman,et al.  Properties of Metallic Nanowires: From Conductance Quantization to Localization , 1995, Science.

[20]  Jacobsen,et al.  Olesen et al. reply. , 1995, Physical Review Letters.

[21]  Jung,et al.  Identification of metals in scanning tunneling microscopy via image states. , 1995, Physical review letters.

[22]  Behm,et al.  Step faceting: Origin of the temperature dependent induction period in Ni(100) oxidation. , 1995, Physical review letters.

[23]  Yoshinobu,et al.  Elucidation of hydrogen-induced (1 x 2) reconstructed structures on Pd(110) from 100 to 300 K by scanning tunneling microscopy. , 1995, Physical review. B, Condensed matter.

[24]  Stoltze,et al.  "Dealloying" phase separation during growth of Au on Ni(110). , 1995, Physical review letters.

[25]  I. Stensgaard,et al.  STM study of the Ni(110)-(2 × 1)-2CO system: structure and bonding-site determination , 1995 .

[26]  Eric J. Heller,et al.  Waves On A Metal Surface And Quantum Corrals , 1995 .

[27]  K. Kern,et al.  Aggregation of fractal and endritic Ag clusters on a Pt(111) surface , 1995 .

[28]  Hwang,et al.  Strain Relaxation in Hexagonally Close-Packed Metal-Metal Interfaces. , 1995, Physical review letters.

[29]  Tersoff Surface-confined alloy formation in immiscible systems. , 1995, Physical review letters.

[30]  P. Varga,et al.  Submonolayer growth of Pb on Cu( 111): surface alloying and de-alloying , 1994 .

[31]  Ertl,et al.  Interactions between alkali metals and oxygen on a reconstructed surface: An STM study of oxygen adsorption on the alkali-metal-covered Cu(110) surface. , 1994, Physical review. B, Condensed matter.

[32]  G. Kellogg,et al.  Field ion microscope studies of single-atom surface diffusion and cluster nucleation on metal surfaces , 1994 .

[33]  R. Madix,et al.  Monitoring surface reactions with scanning tunneling microscopy: CO oxidation on p(2 × 1)-O pre-covered Cu(110) at 400 K , 1994 .

[34]  Kern,et al.  Microscopic view of nucleation on surfaces. , 1994, Physical review letters.

[35]  P. Avouris Studies of confined states and quantum size effects with scanning tunneling microscopy , 1994 .

[36]  K. Jacobsen,et al.  Nucleation of the Pt(111) reconstruction: a simulation study , 1994 .

[37]  Himpsel,et al.  Spectroscopic signature of Cu on W(110) from scanning tunneling microscopy and inverse photoemission. , 1994, Physical review. B, Condensed matter.

[38]  G. Somorjai,et al.  Nanocatalysis by the Tip of a Scanning Tunneling Microscope Operating Inside a Reactor Cell , 1994, Science.

[39]  H. Ibach,et al.  On the time structure of tunneling images of steps , 1994 .

[40]  D. F. Ogletree,et al.  Imaging a p(2 × 2) layer of sulfur on Re(0001) with the scanning tunneling microscope: an experimental and theoretical study of the effect of adsorption site and tip structure , 1994 .

[41]  D. P. Woodruff Adsorbate-induced reconstruction of surfaces: An atomistic alternative to microscopic faceting? , 1994 .

[42]  I. Stensgaard,et al.  The decomposition of ammonia on an oxygen-precovered Ni(110) surface studied by scanning tunneling microscopy , 1994 .

[43]  Meyer,et al.  Surfactant-induced layer-by-layer growth of Ag on Ag(111): Origins and side effects. , 1994, Physical review letters.

[44]  E. Heller,et al.  Scattering and absorption of surface electron waves in quantum corrals , 1994, Nature.

[45]  I. Stensgaard,et al.  Interaction of oxygen with Ni(110) studied by scanning tunneling microscopy , 1994 .

[46]  K. Kern,et al.  Mechanism of the transition from fractal to dendritic growth of surface aggregates , 1994, Nature.

[47]  P. M. Leibsle Purposeful coadsorption as a method for determining adsorption sites in scanning tunneling microscopy experiments , 1994 .

[48]  Yukio Hasegawa,et al.  Real space imaging of electron scattering phenomena at metal surfaces , 1994 .

[49]  M. Tsukada,et al.  Theory of scanning tunneling microscopy of oxygen‐adsorbed Ag(110) and Cu(110) surfaces , 1994 .

[50]  Davis,et al.  Scanning tunneling microscopy studies of formaldehyde synthesis on Cu(110). , 1994, Physical review letters.

[51]  Jacobsen,et al.  Quantized conductance in an atom-sized point contact. , 1994, Physical review letters.

[52]  M. W. Roberts,et al.  Oxygen sites active in H-abstraction at a Cu(110)-O surface: Comparison of a Monte Carlo simulation with imide formation studied by XPS and VEELS , 1994 .

[53]  Ghosh Solving relativistic bound-state problems in a self-interacting complex scalar field model by discretized light-cone quantization in 1+1 dimensions. , 1994, Physical review. D, Particles and fields.

[54]  Stroscio,et al.  Scaling of diffusion-mediated island growth in iron-on-iron homoepitaxy. , 1994, Physical review. B, Condensed matter.

[55]  P. Sautet,et al.  A theoretical analysis of the site dependence of the shape of a molecule in STM images , 1994 .

[56]  Hohage,et al.  Origin of oxygen induced layer-by-layer growth in homoepitaxy on Pt(111). , 1994, Physical review letters.

[57]  Kern,et al.  Strain relief at hexagonal-close-packed interfaces. , 1994, Physical review. B, Condensed matter.

[58]  M. Passler,et al.  A reinvestigation of the surface structure of Ni(110)−(2×1)2CO by LEED , 1994 .

[59]  Lang,et al.  Interaction of C with Ni(100): Atom-resolved studies of the "clock" reconstruction. , 1993, Physical review letters.

[60]  Ibach,et al.  Time dependence of step fluctuations on vicinal Cu(1 1 19) surfaces investigated by tunneling microscopy. , 1993, Physical review letters.

[61]  Kuipers,et al.  Step dynamics on Au(110) studied with a high-temperature, high-speed scanning tunneling microscope. , 1993, Physical review letters.

[62]  Weiss,et al.  Site dependence of the apparent shape of a molecule in scanning tunneling micoscope images: Benzene on Pt{111} , 1993, Physical review letters.

[63]  I. Stensgaard,et al.  X-ray diffraction investigation of the sulphur induced 4×1 reconstruction of Ni(110) , 1993 .

[64]  I. Stensgaard,et al.  A scanning tunneling microscopy investigation of the Ni(110)-p(4 × 1)S phase , 1993 .

[65]  K. Kern,et al.  Building one- and two-dimensional nanostructures by diffusion-controlled aggregation at surfaces , 1993, Nature.

[66]  M F Crommie,et al.  Confinement of Electrons to Quantum Corrals on a Metal Surface , 1993, Science.

[67]  D. F. Ogletree,et al.  The role of electronic interferences in determining the appearance of STM images: application to the S(2 × 2)/Re(0001) system , 1993 .

[68]  Kern,et al.  Monolayer-confined mixing at the Ag-Pt(111) interface. , 1993, Physical review letters.

[69]  García,et al.  Quantum contact in gold nanostructures by scanning tunneling microscopy. , 1993, Physical review letters.

[70]  Vieira,et al.  Atomic-scale connective neck formation and characterization. , 1993, Physical review. B, Condensed matter.

[71]  Pendry,et al.  Scanning-tunneling-microscopy investigation of the p(2 x 2) and c(2 x 2) overlayers of S on Ni(100). , 1993, Physical review. B, Condensed matter.

[72]  J. Nørskov,et al.  Oxygen chemisorption on metal surfaces: General trends for Cu, Ni and Ag , 1993 .

[73]  Hasegawa,et al.  Direct observation of standing wave formation at surface steps using scanning tunneling spectroscopy. , 1993, Physical review letters.

[74]  Rosenfeld,et al.  Layer-by-layer growth of Ag on Ag(111) induced by enhanced nucleation: A model study for surfactant-mediated growth. , 1993, Physical review letters.

[75]  Jacobsen,et al.  Initial growth of Au on Ni(110): Surface alloying of immiscible metals. , 1993, Physical review letters.

[76]  G. Ertl,et al.  Interaction of oxygen with Al(111) studied by scanning tunneling microscopy , 1993 .

[77]  Shirley,et al.  Structural determination of p2mg(2 x 1)CO/Ni(110) with the use of angle-resolved photoemission extended fine structure. , 1993, Physical review. B, Condensed matter.

[78]  Ertl,et al.  Scanning-tunneling-microscope imaging of clean and alkali-metal-covered Cu(110) and Au(110) surfaces. , 1993, Physical review. B, Condensed matter.

[79]  D. Chambliss,et al.  Growth and morphology of partial and multilayer Fe thin films on Cu(100) and the effect of adsorbed gases studied by scanning tunneling microscopy , 1993 .

[80]  Ruan,et al.  Atom resolved discrimination of chemically different elements on metal surfaces. , 1993, Physical review letters.

[81]  Stroscio,et al.  Homoepitaxial growth of iron and a real space view of reflection-high-energy-electron diffraction. , 1993, Physical review letters.

[82]  R. David,et al.  Structure of the hydrogen covered Cu(110) surface studied with thermal energy helium scattering , 1993 .

[83]  D. King,et al.  The coadsorption of ammonia and oxygen on Ni{110}: a RAIRS study , 1993 .

[84]  G. Thornton,et al.  One-dimensional reactivity in catalysis studied with the scanning tunnelling microscope , 1993, Nature.

[85]  D. Eigler,et al.  Imaging standing waves in a two-dimensional electron gas , 1993, Nature.

[86]  Scheffler,et al.  Reconstruction mechanism of fcc transition metal (001) surfaces. , 1993, Physical review letters.

[87]  C. J. Chen,et al.  Introduction to Scanning Tunneling Microscopy , 1993 .

[88]  Guo,et al.  Scanning-tunneling-microscopy study of the oxygen-induced reconstruction of Rh(110). , 1993, Physical review. B, Condensed matter.

[89]  Scheffler,et al.  Green-function theory of scanning tunneling microscopy: Tunnel current and current density for clean metal surfaces. , 1993, Physical review. B, Condensed matter.

[90]  M. Tsukada,et al.  Theory of Scanning Tunneling Microscopy/Spectroscopy for Adsorbed Surfaces and Layer Crystal Surfaces , 1993 .

[91]  R. Schlögl,et al.  Oxygen-induced restructuring of Ag(111) , 1993 .

[92]  M. W. Roberts,et al.  Reaction pathways in the oxydehydrogenation of ammonia at Cu(110) surfaces , 1993 .

[93]  Varga,et al.  Direct observation of surface chemical order by scanning tunneling microscopy. , 1993, Physical review letters.

[94]  Bott,et al.  Pt(111) reconstruction induced by enhanced Pt gas-phase chemical potential. , 1993, Physical review letters.

[95]  R. Behm,et al.  Microscopic Aspects of Thin Metal Film Epitaxial Growth on Metallic Substrates , 1993 .

[96]  J. Nørskov,et al.  Many-atom interactions in metals , 1993 .

[97]  Dorenbos,et al.  Low-energy ion-scattering study of the oxygen-induced reconstructed p(2 x 1) and c(6 x 2) surfaces of Cu(110). , 1993, Physical review. B, Condensed matter.

[98]  Phaedon Avouris,et al.  Atomic and nanometer-scale modification of materials : fundamentals and applications , 1993 .

[99]  Ruan,et al.  Atom-resolved studies of the reaction between H2S and O on Ni(110). , 1992, Physical review letters.

[100]  R. Koch,et al.  Reconstruction behaviour of fcc(110) transition metal surfaces and their vicinals , 1992 .

[101]  D. King,et al.  The adsorption of CO on Ni{110} and its interaction with hydrogen: a RAIRS study , 1992 .

[102]  J. Frohn,et al.  Step dynamics on Ag(111) and Cu(100) surfaces , 1992 .

[103]  H. van Kempen,et al.  Scanning tunnelling microscopy , 1992 .

[104]  J. Rabalais,et al.  Oxygen induced added‐row reconstruction of the Ni{110} surface , 1992 .

[105]  R. Behm,et al.  Nucleation and growth of thin metal films on clean and modified metal substrates studied by scanning tunneling microscopy , 1992 .

[106]  I. Stensgaard,et al.  A scanning tunneling microscopy study of the interaction of S with the Cu(111) surface , 1992 .

[107]  D. Chambliss,et al.  Nucleation and growth of ultrathin Fe and Au films on Cu(100) studied by scanning tunneling microscopy , 1992 .

[108]  J. Gimzewski,et al.  Tunneling characteristics at atomic resolution on close-packed metal surfaces , 1992 .

[109]  Thornton,et al.  Surfactant-induced layer-by-layer growth of Ag on Ag(111). , 1992, Physical review letters.

[110]  Huang,et al.  Reconstruction of the Pt(111) surface. , 1992, Physical review letters.

[111]  Berndt,et al.  Scanning-tunneling-microscope study of antiphase domain boundaries, dislocations, and local mass transport on Au(110) surfaces. , 1992, Physical review. B, Condensed matter.

[112]  D. Chambliss,et al.  Surface alloy formation studied by scanning tunneling microscopy: Cu(100) + Au−c(2 × 2) , 1992 .

[113]  T. Sakurai,et al.  Ordering of Ag-O chains on the Ag(110) surface , 1992 .

[114]  Ertl,et al.  Surface migration of "hot" adatoms in the course of dissociative chemisorption of oxygen on Al(111). , 1992, Physical review letters.

[115]  D. Boerma,et al.  ATOMIC POSITIONS ON OXYGEN-COVERED CU(110) SURFACES , 1992 .

[116]  H. Güntherodt,et al.  Scanning Tunneling Microscopy I , 1992 .

[117]  J. Nørskov,et al.  Chemisorption of H, O, and S on Ni(110) : general trends , 1992 .

[118]  J. Rabalais,et al.  Hydrogen adsorption site on the Ni{110}-p(1 × 2)-H surface from time-of-flight scattering and recoiling spectrometry (TOF-SARS) , 1992 .

[119]  D. Vanderbilt Phase segregation and work-function variations on metal surfaces: spontaneous formation of periodic domain structures☆ , 1992 .

[120]  Ertl,et al.  Phase transitions and domain-wall structures in the K/Cu(110) system: Scanning-tunneling-microscopy observations and Monte Carlo simulations. , 1991, Physical review. B, Condensed matter.

[121]  Nielsen,et al.  Nucleation and growth of a H-induced reconstruction of Ni(110). , 1991, Physical review. B, Condensed matter.

[122]  Koch,et al.  New aspects on the Ir(110) reconstruction: Surface stabilization on mesoscopic scale via (331) facets. , 1991, Physical review letters.

[123]  I. Stensgaard,et al.  Oxidation of Cu(111): two new oxygen induced reconstructions , 1991 .

[124]  D. Eigler,et al.  Atomic and Molecular Manipulation with the Scanning Tunneling Microscope , 1991, Science.

[125]  Schatz,et al.  Long-range spatial self-organization in the adsorbate-induced restructuring of surfaces: Cu{100}-(2 x 1)O. , 1991, Physical review letters.

[126]  F. Habraken,et al.  Absolute oxygen chemisorption saturation coverages for Cu single crystal surfaces , 1991 .

[127]  Johnson,et al.  Determination of the Cu(110)-c(6 x 2)-O structure by x-ray diffraction. , 1991, Physical Review B (Condensed Matter).

[128]  K. Heinz,et al.  Structure determination of p4g Ni(100)-(2 × 2)C by LEED , 1991 .

[129]  Lang,et al.  Imaging Xe with a low-temperature scanning tunneling microscope. , 1991, Physical review letters.

[130]  Frank Jensen,et al.  Visualization of the dynamics in surface reconstructions , 1991 .

[131]  G. Ertl,et al.  Atomic motion and mass transport in the oxygen induced reconstructions of Cu(110) , 1991 .

[132]  R. Needs,et al.  Theory of surface stress and surface reconstruction , 1991 .

[133]  M. Tsukada,et al.  First-principles theory of scanning tunneling microscopy , 1991 .

[134]  D. R. Huntley The reaction of H2S with surface oxygen on Ni(110) , 1990 .

[135]  G. Ertl,et al.  An STM investigation of the Cu(110)−c(6 × 2)O system , 1990 .

[136]  Ertl,et al.  Scanning tunneling microscopy observations on the reconstructed Au(111) surface: Atomic structure, long-range superstructure, rotational domains, and surface defects. , 1990, Physical review. B, Condensed matter.

[137]  R. Howe,et al.  Chemistry and Physics of Solid Surfaces VIII , 1990 .

[138]  Baratoff,et al.  Site-dependent electronic effects, forces, and deformations in scanning tunneling microscopy of flat metal surfaces. , 1990, Physical review. B, Condensed matter.

[139]  Johnson,et al.  Oxygen chemisorption on Cu(110): A model for the c(6 x 2) structure. , 1990, Physical review letters.

[140]  J K Norsko,et al.  Chemisorption on metal surfaces , 1990 .

[141]  Karsten Wedel Jacobsen,et al.  Theory of the oxygen-induced restructuring of Cu(110) and Cu(100) surfaces , 1990 .

[142]  R. J. Behm,et al.  Direct Imaging of Adsorption Sites and Local Electronic Bond Effects on a Metal Surface: C/Al(111) , 1990 .

[143]  Tien T. Tsong,et al.  Atom‐Probe Field Ion Microscopy , 1990 .

[144]  U. Starke,et al.  LEED structure analysis of p(2 × 2)S/Ni(100) , 1990 .

[145]  M. Baskes,et al.  The (1 × 2) missing-row phase of Au(110): energetics determined from an extended embedded atom method , 1990 .

[146]  Chen,et al.  Origin of atomic resolution on metal surfaces in scanning tunneling microscopy. , 1990, Physical review letters.

[147]  Chua,et al.  O chemisorption on Cu(110) by scanning tunneling microscopy. , 1990, Physical review. B, Condensed matter.

[148]  Jensen,et al.  Surface reconstruction of Cu(110) induced by oxygen chemisorption. , 1990, Physical review. B, Condensed matter.

[149]  Ertl,et al.  Novel mechanism for the formation of chemisorption phases: The (2 x 1)O-Cu(110) "added row" reconstruction. , 1990, Physical review letters.

[150]  Zeng,et al.  Low-energy electron-diffraction crystallographic determination for the Cu(110)2 x 1-O surface structure. , 1990, Physical review. B, Condensed matter.

[151]  Baratoff,et al.  Tip-sample interaction effects in scanning-tunneling and atomic-force microscopy. , 1990, Physical review. B, Condensed matter.

[152]  N. Garcia,et al.  Scanning Tunneling Microscopy and Related Methods , 1990 .

[153]  Y. Kuk,et al.  Scanning tunneling spectroscopy of metal surfaces , 1990 .

[154]  H. Ibach,et al.  Symmetry and structure of the reconstructed Ni(110)-(2 × 1)O surface , 1990 .

[155]  H. Ibach,et al.  Structure and adsorbate-adsorbate interactions of the compressed Ni(110)-(2 × 1)CO structure , 1990 .

[156]  R. Tromp Spectroscopy with the scanning tunnelling microscope: a critical review , 1989 .

[157]  U. Starke,et al.  Adsorbate-induced relaxation and reconstruction of c(2 × 2)O/Ni(100): A reinvestigation by leed structure analysis , 1989 .

[158]  Feibelman Lattice relaxation near isolated adsorbates. , 1989, Physical review letters.

[159]  E. Kaxiras,et al.  Adsorption of boron on Si(111): Its effect on surface electronic states and reconstruction. , 1989, Physical review letters.

[160]  Chen,et al.  Surface doping and stabilization of Si(111) with boron. , 1989, Physical review letters.

[161]  C. Joachim,et al.  The Sixl-Higelin salicylideneaniline molecular switch revisited , 1989 .

[162]  Y. Kuk,et al.  Scanning tunneling microscope instrumentation , 1989 .

[163]  Brune,et al.  Atomic-resolution imaging of close-packed metal surfaces by scanning tunneling microscopy. , 1989, Physical review letters.

[164]  M. Hove,et al.  ADSORBATE-INDUCED RESTRUCTURING OF SURFACES , 1989 .

[165]  I. Stensgaard,et al.  A fully automated, ‘thimble‐size’ scanning tunnelling microscope , 1988, Journal of microscopy.

[166]  R. Hamers,et al.  The STM learning curve and where it may take us * , 1988 .

[167]  J. Haase,et al.  Reconstruction and relaxation of the oxygen-covered Cu(111) surface: A sexafs study , 1988 .

[168]  Klaus Christmann,et al.  Interaction of hydrogen with solid surfaces , 1988 .

[169]  Lang Nd,et al.  Apparent barrier height in scanning tunneling microscopy. , 1988 .

[170]  Jacobsen,et al.  Theory of alkali-metal-induced reconstruction of fcc (110) surfaces. , 1988, Physical review letters.

[171]  R. Wilson,et al.  Scanning tunneling microscopy observations of benzene molecules on the Rh(111)-(3 x 3) (C6H6+2CO) surface. , 1988, Physical review letters.

[172]  Lang,et al.  Tip electronic structure in scanning tunneling microscopy. , 1988, Physical review. B, Condensed matter.

[173]  Williamson,et al.  Quantized conductance of point contacts in a two-dimensional electron gas. , 1988, Physical review letters.

[174]  P. Thiel,et al.  Oxygen on Pd(100): Order, reconstruction, and desorption , 1988 .

[175]  L. Nd Resistance of a one-atom contact in the scanning tunneling microscope. , 1987 .

[176]  Ho,et al.  Stability of the missing-row reconstruction on fcc (110) transition-metal surfaces. , 1987, Physical review letters.

[177]  Gaylord,et al.  High-resolution photoemission study of the electronic structure of the noble-metal (111) surfaces. , 1987, Physical review. B, Condensed matter.

[178]  G. Ertl,et al.  Mechanistic and energetic aspects of the H-induced (1×2) reconstructed structures on Ni(110) and Pd(110) , 1987 .

[179]  L. Sneddon,et al.  Oxygen chemisorption on copper (110) , 1987 .

[180]  J. Gimzewski,et al.  Transition from the tunneling regime to point contact studied using scanning tunneling microscopy. , 1987, Physical review. B, Condensed matter.

[181]  A. P. Fein,et al.  Tunneling spectroscopy of the Si(111)2 × 1 surface , 1987 .

[182]  E. Bauer G. Ertl, J. Küppers: Low energy electrons and surface chemistry, second, completely revised edition, VCH Verlagsgesellschaft, Weinheim 1985. 374 Seiten, Preis: DM 168,-/$ 75.00 , 1987 .

[183]  Lang Nd,et al.  Apparent size of an atom in the scanning tunneling microscope as a function of bias. , 1987 .

[184]  D. Harrington,et al.  Surface phases of Ni(110) induced by adsorption of deuterium , 1987 .

[185]  D. P. Woodruff,et al.  Modern techniques of surface science , 1986 .

[186]  Lang,et al.  Spectroscopy of single atoms in the scanning-tunneling microscope. , 1986, Physical review. B, Condensed matter.

[187]  Dieter W. Pohl,et al.  Some design criteria in scanning tunneling microscopy , 1986, IBM J. Res. Dev..

[188]  Lang,et al.  Theory of single-atom imaging in the scanning tunneling microscope. , 1986, Physical review letters.

[189]  G. Ertl,et al.  On the Kinetics and Mechanism of the Oxygen Induced (2 × 1) Reconstruction of Ni(HO) , 1986 .

[190]  Lang Vacuum tunneling current from an adsorbed atom. , 1985, Physical review letters.

[191]  J. Toennies,et al.  Observation of a soliton reconstruction of Au(111) by high-resolution helium-atom diffraction. , 1985, Physical review letters.

[192]  R. Landauer,et al.  Generalized many-channel conductance formula with application to small rings. , 1985, Physical review. B, Condensed matter.

[193]  J. Yates,et al.  NH3 adsorption on Ni(110) and the production of the NH2 species by electron irradiation , 1985 .

[194]  T. Madey,et al.  Influence of surface additives (Na and O) on the adsorption and structure of NH3, on Ni(110) , 1985 .

[195]  Hamann,et al.  Theory of the scanning tunneling microscope. , 1985, Physical review. B, Condensed matter.

[196]  J. Villarrubia,et al.  Reaction of hydrogen with adsorbed oxygen on Ni(110) , 1984 .

[197]  Charles T. Campbell,et al.  The interactions of O2, CO and CO2 with Ag(110) , 1984 .

[198]  J. Venables,et al.  Nucleation and growth of thin films , 1984 .

[199]  D. Zehner,et al.  An angle‐resolved UPS study of the oxygen‐induced reconstruction of Cu(110) , 1984 .

[200]  D. Hamann,et al.  Theory and Application for the Scanning Tunneling Microscope , 1983 .

[201]  C. Gerber,et al.  Surface Studies by Scanning Tunneling Microscopy , 1982 .

[202]  E. Bauer Epitaxy of metals on metals , 1982 .

[203]  G. Binnig,et al.  Tunneling through a controllable vacuum gap , 1982 .

[204]  D. A. King,et al.  The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis , 1981 .

[205]  M. Bowker,et al.  Oxygen induced adsorption and reaction of H2, H2O, CO and CO2 on single crystal Ag(110) , 1980 .

[206]  Michel A. Van Hove,et al.  Surface Crystallography by LEED , 1979 .

[207]  N. D. Lang,et al.  Theory of atomic chemisorption on simple metals , 1978 .

[208]  D. Turnbull,et al.  Solid State Physics : Advances in Research and Applications , 1978 .

[209]  Gerhard Ertl,et al.  Low Energy Electrons and Surface Chemistry , 1974 .

[210]  John B. Pendry,et al.  Low Energy Electron Diffraction: The Theory and Its Application to Determination of Surface Structure , 1974 .

[211]  D. F. Mitchell,et al.  Leed and heed studies of the interaction of oxygen with single crystal surfaces of copper , 1967 .

[212]  G. Ertl Untersuchung von oberflächenreaktionen mittels beugung langsamer elektronen (LEED): I. Wechselwirkung von O2 und N2O mit (110)-, (111)- und (100)-Kupfer-Oberflächen , 1967 .

[213]  A. U. Macrae,et al.  Adsorption of Hydrogen on a (110) Nickel Surface , 1962 .

[214]  J. Bardeen Tunnelling from a Many-Particle Point of View , 1961 .

[215]  J. Friedel,et al.  Electronic structure of primary solid solutions in metals , 1954 .

[216]  F. C. Frank,et al.  One-dimensional dislocations. I. Static theory , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[217]  L. Pauling The Nature Of The Chemical Bond , 1939 .

[218]  I. Langmuir Part II.—“Heterogeneous reactions”. Chemical reactions on surfaces , 1922 .

[219]  I. Langmuir THE CONSTITUTION AND FUNDAMENTAL PROPERTIES OF SOLIDS AND LIQUIDS , 1917 .