On the convergence of primal-dual interior-point methods with wide neighborhoods

We study primal-dual interior-point methods for linear programs. After proposing a new primaldual potential function we describe a new potential reduction algorithm. We make connections between the new potential function and primal-dual interior-point algorithms with wide neighborhoods. Then we describe an algorithm that is a slightly modified version of existing primal-dual algorithms using wide neighborhoods. Assuming the optimal solution is non-degenerate, the algorithm is 1-step Q-quadratically convergent. We also study the degenerate case and show that the neighborhoods of the central path stay large as the iterates approach the optimal solutions.

[1]  Renato D. C. Monteiro,et al.  Interior path following primal-dual algorithms. part I: Linear programming , 1989, Math. Program..

[2]  Michael J. Todd,et al.  A Centered Projective Algorithm for Linear Programming , 1990, Math. Oper. Res..

[3]  Yin Zhang,et al.  On the Superlinear and Quadratic Convergence of Primal-Dual Interior Point Linear Programming Algorithms , 1992, SIAM J. Optim..

[4]  Yinyu Ye,et al.  Convergence behavior of interior-point algorithms , 1993, Math. Program..

[5]  N. Megiddo Pathways to the optimal set in linear programming , 1989 .

[6]  Clóvis C. Gonzaga,et al.  Polynomial affine algorithms for linear programming , 1990, Math. Program..

[7]  Yin Zhang,et al.  A Superlinearly Convergent Polynomial Primal-Dual Interior-Point Algorithm for Linear Programming , 1993, SIAM J. Optim..

[8]  M. Kojima,et al.  A primal-dual interior point algorithm for linear programming , 1988 .

[9]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[10]  Shinji Mizuno,et al.  On Adaptive-Step Primal-Dual Interior-Point Algorithms for Linear Programming , 1993, Math. Oper. Res..

[11]  C. C. Gonzaga,et al.  An (O√(n) L)-Iteration Large-Step Primal-Dual Affine Algorithm for Linear Programming , 1992, SIAM J. Optim..

[12]  Yin Zhang,et al.  A quadratically convergent O( $$\sqrt n $$ L)-iteration algorithm for linear programming , 1993, Math. Program..

[13]  G. Sonnevend An "analytical centre" for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming , 1986 .

[14]  M. Powell Karmarkar's algorithm : a view from nonlinear programming , 1989 .

[15]  D. Bayer,et al.  The Non-Linear Geometry of Linear Pro-gramming I: A?ne and projective scaling trajectories , 1989 .

[16]  Sanjay Mehrotra,et al.  Quadratic Convergence in a Primal-Dual Method , 1993, Math. Oper. Res..

[17]  Kunio Tanabe,et al.  Centered newton method for mathematical programming , 1988 .

[18]  Shinji Mizuno,et al.  A polynomial-time algorithm for a class of linear complementarity problems , 1989, Math. Program..