High-Order Exponential Operator Splitting Methods for Time-Dependent Schrödinger Equations

In this paper, we deduce high-order error bounds for exponential operator splitting methods. The employed techniques are specific to linear differential equations of the form $u'(t) = A \, u(t) + B \, u(t)$, $t \geq 0$, involving an unbounded operator $A$. In particular, evolutionary Schrodinger equations with sufficiently regular initial values are included in the analysis.

[1]  Reinout Quispel,et al.  Geometric Numerical Integration of Differential Equations , 2006 .

[2]  H. Trotter On the product of semi-groups of operators , 1959 .

[3]  G. Quispel,et al.  Splitting methods , 2002, Acta Numerica.

[4]  Marlis Hochbruck,et al.  On Magnus Integrators for Time-Dependent Schrödinger Equations , 2003, SIAM J. Numer. Anal..

[5]  P. Markowich,et al.  Numerical solution of the Gross--Pitaevskii equation for Bose--Einstein condensation , 2003, cond-mat/0303239.

[6]  Q. Sheng Global error estimates for exponential splitting , 1994 .

[7]  Elena Celledoni,et al.  A symmetric splitting method for rigid body dynamics , 2006 .

[8]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[9]  C. Lubich,et al.  Error Bounds for Exponential Operator Splittings , 2000 .

[10]  G. R. W. Quispel,et al.  Geometric integration of conservative polynomial ODEs , 2003 .

[11]  A. Murua,et al.  Preserving first integrals and volume forms of additively split systems , 2007 .

[12]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[13]  E. Hille Functional Analysis And Semi-Groups , 1948 .

[14]  Christophe Besse,et al.  Order Estimates in Time of Splitting Methods for the Nonlinear Schrödinger Equation , 2002, SIAM J. Numer. Anal..

[15]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[16]  S. Blanes,et al.  Practical symplectic partitioned Runge--Kutta and Runge--Kutta--Nyström methods , 2002 .

[17]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[18]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .