High-Order Exponential Operator Splitting Methods for Time-Dependent Schrödinger Equations
暂无分享,去创建一个
[1] Reinout Quispel,et al. Geometric Numerical Integration of Differential Equations , 2006 .
[2] H. Trotter. On the product of semi-groups of operators , 1959 .
[3] G. Quispel,et al. Splitting methods , 2002, Acta Numerica.
[4] Marlis Hochbruck,et al. On Magnus Integrators for Time-Dependent Schrödinger Equations , 2003, SIAM J. Numer. Anal..
[5] P. Markowich,et al. Numerical solution of the Gross--Pitaevskii equation for Bose--Einstein condensation , 2003, cond-mat/0303239.
[6] Q. Sheng. Global error estimates for exponential splitting , 1994 .
[7] Elena Celledoni,et al. A symmetric splitting method for rigid body dynamics , 2006 .
[8] G. Strang. On the Construction and Comparison of Difference Schemes , 1968 .
[9] C. Lubich,et al. Error Bounds for Exponential Operator Splittings , 2000 .
[10] G. R. W. Quispel,et al. Geometric integration of conservative polynomial ODEs , 2003 .
[11] A. Murua,et al. Preserving first integrals and volume forms of additively split systems , 2007 .
[12] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.
[13] E. Hille. Functional Analysis And Semi-Groups , 1948 .
[14] Christophe Besse,et al. Order Estimates in Time of Splitting Methods for the Nonlinear Schrödinger Equation , 2002, SIAM J. Numer. Anal..
[15] Amnon Pazy,et al. Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.
[16] S. Blanes,et al. Practical symplectic partitioned Runge--Kutta and Runge--Kutta--Nyström methods , 2002 .
[17] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[18] R. Nagel,et al. One-parameter semigroups for linear evolution equations , 1999 .