Topological network synthesis

We consider several families of deterministic network optimization problems (NOPs) of particular importance for the design (synthesis) of real-life transportation, communication, and distribution networks. These families of NOPs include determination of optimal spanning and Steiner trees, multiconnected networks, distance bounded networks. and capacitated networks. Problems belonging to these families are formulated in an unified manner, and exact algorithms, heuristics, as well as algorithms for special cases are surveyed. Commonalities within each family as well as across family boundaries are identified. A wide range of open problems is given.

[1]  K. Steiglitz,et al.  The Design of Minimum-Cost Survivable Networks , 1969 .

[2]  K. Mani Chandy,et al.  The Capacitated Minimum Spanning Tree , 1973, Networks.

[3]  Harold N. Gabow,et al.  Two Algorithms for Generating Weighted Spanning Trees in Order , 1977, SIAM J. Comput..

[4]  Jan Karel Lenstra,et al.  The complexity of the network design problem , 1978, Networks.

[5]  J. E. Beasley An SST-based algorithm for the steiner problem in graphs , 1989, Networks.

[6]  T. C. Hu Optimum Communication Spanning Trees , 1974, SIAM J. Comput..

[7]  Clyde L. Monma,et al.  Minimum-weight two-connected spanning networks , 1990, Math. Program..

[8]  Richard T. Wong,et al.  Worst-Case Analysis of Network Design Problem Heuristics , 1980, SIAM J. Algebraic Discret. Methods.

[9]  J. Krarup,et al.  Selected Families of Location Problems , 1979 .

[10]  R. Prim Shortest connection networks and some generalizations , 1957 .

[11]  T. C. Hu,et al.  Multi-Terminal Network Flows , 1961 .

[12]  F. T. Boesch,et al.  Properties of the distance matrix of a tree , 1969 .

[13]  Ramaswamy Chandrasekaran,et al.  Minimal ratio spanning trees , 1977, Networks.

[14]  J. Krarup,et al.  The simple plant location problem: Survey and synthesis , 1983 .

[15]  M. Padberg,et al.  On the symmetric travelling salesman problem II , 1979 .

[16]  Toshihide Ibaraki,et al.  An Algorithm for Finding K Minimum Spanning Trees , 1981, SIAM J. Comput..

[17]  Thomas L. Magnanti,et al.  Deterministic network optimization: A bibliography , 1977, Networks.

[18]  Raymond E. Miller,et al.  Complexity of Computer Computations , 1972 .

[19]  A. Pascu Operational research '81: J.P. Brans (Ed.) Proceedings of the Ninth IFORS International Conference on Operational Research, Hamburg, Germany, July 20–24, 1981, North-Holland, Amsterdam, 1981, xx + 984 pages, Dfl.250.000 , 1982 .

[20]  Bezalel Gavish,et al.  Topological design of centralized computer networks - formulations and algorithms , 1982, Networks.

[21]  Jean-Claude Bermond,et al.  Surveys in Combinatorics: GRAPHS AND INTERCONNECTION NETWORKS: DIAMETER AND VULNERABILITY , 1983 .

[22]  Michael Florian,et al.  Exact and approximate algorithms for optimal network design , 1979, Networks.

[23]  Aaron Kershenbaum,et al.  Computing capacitated minimal spanning trees efficiently , 1974, Networks.

[24]  S. S. Yau,et al.  Distance matrix of a graph and its realizability , 1965 .

[25]  Pawel Winter An algorithm for the enumeration of spanning trees , 1986, BIT Comput. Sci. Sect..

[26]  Ján Plesník,et al.  A note on the complexity of finding regular subgraphs , 1984, Discret. Math..

[27]  G. Dantzig Discrete-Variable Extremum Problems , 1957 .

[28]  Ulrich Schumacher An algorithm for construction of a k-connected graph with minimum number of edges and quasiminimal diameter , 1984, Networks.

[29]  I. T. Frisch,et al.  Flow variation in multiple min-cut calculations☆ , 1969 .

[30]  Charles J. Colbourn,et al.  Steiner trees, partial 2-trees, and minimum IFI networks , 1983, Networks.

[31]  Paolo M. Camerini The Min-Max Spanning Tree Problem and Some Extensions , 1978, Inf. Process. Lett..

[32]  Thomas L. Magnanti,et al.  Accelerating Benders Decomposition: Algorithmic Enhancement and Model Selection Criteria , 1981, Oper. Res..

[33]  Andrew Chi-Chih Yao,et al.  An O(|E| log log |V|) Algorithm for Finding Minimum Spanning Trees , 1975, Inf. Process. Lett..

[34]  Martin Farber,et al.  Steiner trees, connected domination and strongly chordal graphs , 1985, Networks.

[35]  S. Louis Hakimi,et al.  Steiner's problem in graphs and its implications , 1971, Networks.

[36]  Timothy J. Lowe,et al.  Location on Networks: A Survey. Part I: The p-Center and p-Median Problems , 1983 .

[37]  G. Nemhauser,et al.  Integer Programming , 2020 .

[38]  J. Smith 5 – Generalized Steiner network problems in engineering design , 1985 .

[39]  Pawel Winter Steiner problem in Halin networks , 1987, Discret. Appl. Math..

[40]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[41]  Frank Harary,et al.  Graph Theory , 2016 .

[42]  S. E. Dreyfus,et al.  The steiner problem in graphs , 1971, Networks.

[43]  R. Wilkov,et al.  Analysis and Design of Reliable Computer Networks , 1972, IEEE Trans. Commun..

[44]  I. Frisch,et al.  Analysis and Design of Survivable Networks , 1970 .

[45]  Ján Plesník,et al.  The complexity of designing a network with minimum diameter , 1981, Networks.

[46]  David S. Johnson,et al.  The Rectilinear Steiner Tree Problem is NP Complete , 1977, SIAM Journal of Applied Mathematics.

[47]  J. Plesník A bound for the Steiner tree problem in graphs , 1981 .

[48]  Harold N. Gabow A good algorithm for smallest spanning trees with a degree constraint , 1978, Networks.

[49]  R. Weischedel,et al.  Optimal Network Problem: A Branch-and-Bound Algorithm , 1973 .

[50]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[51]  R. L. Francis,et al.  State of the Art-Location on Networks: A Survey. Part II: Exploiting Tree Network Structure , 1983 .

[52]  R. Chandrasekaran,et al.  Minimal Cost-Reliability Ratio Spanning Tree* , 1981 .

[53]  Eugene W. Myers,et al.  Finding All Spanning Trees of Directed and Undirected Graphs , 1978, SIAM J. Comput..

[54]  Ivan T. Frisch,et al.  Communication, transmission, and transportation networks , 1971 .

[55]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[56]  Pawel Winter,et al.  Steiner problem in networks: A survey , 1987, Networks.

[57]  Bruce E. Peterson,et al.  A cut-flow procedure for transportation network optimization , 1980, Networks.

[58]  Thomas L. Magnanti,et al.  Network Design and Transportation Planning: Models and Algorithms , 1984, Transp. Sci..

[59]  Pawel Winter,et al.  Generalized steiner problem in outerplanar networks , 1985, BIT.

[60]  S. Martello,et al.  Finding a minimum equivalent graph of a digraph , 1982, Networks.

[61]  A. Scott The optimal network problem: Some computational procedures , 1969 .

[62]  Martin Grötschel,et al.  On the symmetric travelling salesman problem I: Inequalities , 1979, Math. Program..

[63]  John E. Beasley An algorithm for the steiner problem in graphs , 1984, Networks.

[64]  Yash P. Aneja,et al.  An integer linear programming approach to the steiner problem in graphs , 1980, Networks.

[65]  F. Hwang On Steiner Minimal Trees with Rectilinear Distance , 1976 .

[66]  F. T. Boesch,et al.  On the Invulnerability of the Regular Complete k-Partite Graphs , 1971 .

[67]  Marc Los,et al.  Combinatorial Programming, Statistical Optimization and the Optimal Transportation Network Problem , 1980 .

[68]  V. J. Rayward-Smith,et al.  The computation of nearly minimal Steiner trees in graphs , 1983 .

[69]  Pawel Winter,et al.  Generalized Steiner Problem in Series-Parallel Networks , 1986, J. Algorithms.

[70]  Victor J. Rayward-Smith,et al.  On finding steiner vertices , 1986, Networks.

[71]  David S. Johnson,et al.  The Rectilinear Steiner Problem is NP-Complete , 1977 .

[72]  Peter B. Gibbons,et al.  An algorithm for the steiner problem in graphs , 1982, Networks.

[73]  Richard T. Wong,et al.  A dual ascent approach for steiner tree problems on a directed graph , 1984, Math. Program..

[74]  Kenneth Steiglitz,et al.  The Design of Small-Diameter Networks by Local Search , 1979, IEEE Transactions on Computers.

[75]  Martin Grötschel,et al.  On the symmetric travelling salesman problem II: Lifting theorems and facets , 1979, Math. Program..

[76]  Pawel Winter,et al.  An algorithm for the steiner problem in the euclidean plane , 1985, Networks.

[77]  Hoang Hai Hoc A Computational Approach to the Selection of an Optimal Network , 1973 .

[78]  John R. Beaumont,et al.  Studies on Graphs and Discrete Programming , 1982 .

[79]  D. Matula k-Components, Clusters and Slicings in Graphs , 1972 .

[80]  Robert E. Tarjan,et al.  Finding Minimum Spanning Trees , 1976, SIAM J. Comput..

[81]  Clyde L. Monma,et al.  Send-and-Split Method for Minimum-Concave-Cost Network Flows , 1987, Math. Oper. Res..

[82]  Giorgio Gallo,et al.  Lower planes for the network design problem , 1983, Networks.

[83]  F. Boesch,et al.  A Generalization of Line Connectivity and Optimally Invulnerable Graphs , 1978 .