Let there be chip—towards rapid prototyping of microfluidic devices: one-step manufacturing processes

Microfluidics is an evolving scientific field with immense commercial potential: analytical applications, such as biochemical assay development, biochemical analysis and biosensors as well as chemical synthesis applications essentially require microfluidics for sample handling, treatment or readout. A number of techniques are available to create microfluidic structures today. On industrial scale replication techniques such as injection molding are the gold standard whereas academic research mostly focuses on replication by casting of soft elastomers such as polydimethylsiloxane (PDMS). Both of these techniques require the creation of a replication master thus creating the microfluidic structure only in the second process step—they can therefore be termed two-(or multi-)step manufacturing techniques. However, very often the number of pieces to be created of one specific microfluidic design is low, sometimes even as low as one. This raises the question if two-step manufacturing is an appropriate choice, particularly if short concept-to-chip times are required. In this case one-step manufacturing techniques that allow the direct creation of microfluidic structures from digital three-dimensional models are preferable. For these processes the number of parts per design is low (sometimes as low as one), but quick adaptation is possible by simply changing digital data. Suitable techniques include, among others, maskless or mask based stereolithography, fused deposition molding and 3D printing. This work intends to discuss the potential and application examples of such processes with a detailed view on applicable materials. It will also point out the advantages and the disadvantages of the respective technique. Furthermore this paper also includes a discussion about non-conventional manufacturing equipment and community projects that can be used in the production of microfluidic devices.

[1]  Colleen L Flanagan,et al.  Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. , 2005, Biomaterials.

[2]  G. Whitesides,et al.  Micromolding of Polymers in Capillaries: Applications in Microfabrication , 1996 .

[3]  Michelle Khine,et al.  Shrink film patterning by craft cutter: complete plastic chips with high resolution/high-aspect ratio channel. , 2010, Lab on a chip.

[4]  Holger Becker,et al.  It's the economy... , 2009, Lab on a chip.

[5]  Jeung Sang Go,et al.  A novel fabrication of in-channel 3-D micromesh structure using maskless multi-angle exposure and its microfilter application , 2003, The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, 2003. MEMS-03 Kyoto. IEEE.

[6]  Satish G. Kandlikar,et al.  Comparison of Roughness Parameters for Various Microchannel Surfaces in Single-Phase Flow Applications , 2009 .

[7]  K.E. Petersen,et al.  Micromechanical accelerometer integrated with MOS detection circuitry , 1982, IEEE Transactions on Electron Devices.

[8]  Ali Khademhosseini,et al.  Benchtop fabrication of PDMS microstructures by an unconventional photolithographic method , 2010, Biofabrication.

[9]  George M Whitesides,et al.  Millimeter-scale contact printing of aqueous solutions using a stamp made out of paper and tape. , 2010, Lab on a chip.

[10]  Miloslav Pravda,et al.  Biosensors—42 Years and Counting , 2004 .

[11]  M. Heckele,et al.  Review on micro molding of thermoplastic polymers , 2004 .

[12]  Luke P. Lee,et al.  Shrinky-Dink microfluidics: rapid generation of deep and rounded patterns. , 2008, Lab on a chip.

[13]  Wolfgang Ehrfeld,et al.  ArF-excimer laser ablation experiments on Cycloolefin Copolymer (COC) , 1999 .

[14]  Martin Pumera,et al.  Towards disposable lab‐on‐a‐chip: Poly(methylmethacrylate) microchip electrophoresis device with electrochemical detection , 2002, Electrophoresis.

[15]  Holger Becker,et al.  Hype, hope and hubris: the quest for the killer application in microfluidics. , 2009, Lab on a chip.

[16]  Seong-Won Nam,et al.  Simple Route to Hydrophilic Microfluidic Chip Fabrication Using an Ultraviolet (UV)‐Cured Polymer , 2007 .

[17]  Ruth Shinar,et al.  Polypropylene CD-organic light-emitting diode biosensing platform. , 2010, Lab on a chip.

[18]  M. V. Rao,et al.  Surface modification of poly(methyl methacrylate) for improved adsorption of wall coating polymers for microchip electrophoresis , 2006, Electrophoresis.

[19]  Werner Karl Schomburg,et al.  Large-scale hot embossing , 2005 .

[20]  L. Tighzert,et al.  Sorption of organic solvents by packaging materials: polyethylene terephthalate and TOPAS® , 2005 .

[21]  Robin H. Liu,et al.  Microfluidic tectonics: a comprehensive construction platform for microfluidic systems. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Dong Sung Kim,et al.  Disposable integrated microfluidic biochip for blood typing by plastic microinjection moulding. , 2006, Lab on a chip.

[23]  George M Whitesides,et al.  FLASH: a rapid method for prototyping paper-based microfluidic devices. , 2008, Lab on a chip.

[24]  B N Chichkov,et al.  Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics. , 2003, Optics letters.

[25]  Ole Hansen,et al.  Surface-directed capillary system; theory, experiments and applications. , 2005, Lab on a chip.

[26]  Th. Schaller,et al.  Low-cost thermoforming of micro fluidic analysis chips , 2002 .

[27]  Pedro S. Nunes,et al.  Cyclic olefin polymers: emerging materials for lab-on-a-chip applications , 2010 .

[28]  Hong Xia,et al.  Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices. , 2009, Lab on a chip.

[29]  Masashi Watanabe Refreshable microfluidic channels constructed using an inkjet printer , 2007 .

[30]  T. Nisisako,et al.  Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles. , 2008, Lab on a chip.

[31]  A Ahluwalia,et al.  Microsyringe-based deposition of two-dimensional and three-dimensional polymer scaffolds with a well-defined geometry for application to tissue engineering. , 2002, Tissue engineering.

[32]  A. Manz,et al.  Miniaturized total chemical analysis systems: A novel concept for chemical sensing , 1990 .

[33]  R. Pease,et al.  High-performance heat sinking for VLSI , 1981, IEEE Electron Device Letters.

[34]  Steve Arscott,et al.  Integrated microfluidics based on multi-layered SU-8 for mass spectrometry analysis , 2004 .

[35]  John H T Luong,et al.  Poly(vinyl alcohol) functionalized poly(dimethylsiloxane) solid surface for immunoassay. , 2007, Bioconjugate chemistry.

[36]  Jeffrey R. Alcock,et al.  Micro-injection moulding of polymer microfluidic devices , 2009 .

[37]  Extreme ultraviolet lithography , 1999 .

[38]  B. Améduri,et al.  Fluoroelastomers: synthesis, properties and applications , 2001 .

[39]  Salvador Alegret,et al.  Pesticide determination by enzymatic inhibition and amperometric detection in a low-temperature cofired ceramics microsystem. , 2007, Analytical chemistry.

[40]  R. Arun Prasath,et al.  Thiol-ene and thiol-yne chemistry in microfluidics : a straightforward method towards macroporous and nonporous functional polymer beads , 2010 .

[41]  Takahisa Masuzawa,et al.  A Combined Electrical Machining Process for Micronozzle Fabrication , 1994 .

[42]  Yangcheng Lu,et al.  Monodispersed microcapsules enclosing ionic liquid of 1-butyl-3-methylimidazolium hexafluorophosphate , 2007 .

[43]  M. Ostojic,et al.  Fabrication of metallic micromolds by laser and electro-discharge micromachining , 2009 .

[44]  J. Lewis,et al.  Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly , 2003, Nature materials.

[45]  Bastian E. Rapp,et al.  Surface acoustic wave biosensors: a review , 2008, Analytical and bioanalytical chemistry.

[46]  Y. Kakinuma,et al.  Micromachining of Soft Polymer Material applying Cryogenic Cooling , 2008 .

[47]  Christopher K. Ober,et al.  Two-Photon Three-Dimensional Microfabrication of Poly(Dimethylsiloxane) Elastomers , 2004 .

[48]  Yongnian Yan,et al.  Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition , 2002 .

[49]  K. Ikuta,et al.  Fabrication of biodegradable microdevices toward medical application , 2007, 2007 IEEE/ASME international conference on advanced intelligent mechatronics.

[50]  Alicia C B Allen,et al.  Multilayer microfluidic PEGDA hydrogels. , 2010, Biomaterials.

[51]  Oliver Geschke,et al.  Rapid prototyping of polymer microsystems via excimer laser ablation of polymeric moulds. , 2004, Lab on a chip.

[52]  Dong Wang,et al.  A study on micro-hole machining of polycrystalline diamond by micro-electrical discharge machining , 2011 .

[53]  Gwo-Bin Lee,et al.  Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection , 2000, SPIE MOEMS-MEMS.

[54]  S. Kazarian,et al.  Rapid prototyping of microfluidic devices for integrating with FT-IR spectroscopic imaging. , 2010, Lab on a chip.

[55]  R. P. Keatch,et al.  Characterisation of rapid prototyping techniques for studies in cell behaviour , 2010 .

[56]  E. Bassous,et al.  Ink jet printing nozzle arrays etched in silicon , 1977 .

[57]  Duoduo Bao,et al.  Print-and-Peel Fabrication for Microfluidics: What’s in it for Biomedical Applications? , 2009, Annals of Biomedical Engineering.

[58]  W. Hoffmann,et al.  Polymer Lab-on-a-Chip System With Electrical Detection , 2008, IEEE Sensors Journal.

[59]  M. Biernat,et al.  Inhibicja tlenowa procesów fotopolimeryzacji i sposoby jej ograniczania , 2005 .

[60]  Sung-Hoon Ahn,et al.  Fabrication and Characterization of Microparts by Mechanical Micromachining: Precision and Cost Estimation , 2007 .

[61]  Rebecca S. Shawgo,et al.  Biocompatibility and biofouling of MEMS drug delivery devices. , 2003, Biomaterials.

[62]  Su Chen,et al.  Facile synthesis of poly(hydroxyethyl acrylate) by frontal free-radical polymerization , 2007 .

[63]  Simple and rapid methods for the fabrication of polymeric and glass chips for using in analytical chemistry. , 2007, Analytica chimica acta.

[64]  E. Carrilho,et al.  Polyurethane from biosource as a new material for fabrication of microfluidic devices by rapid prototyping. , 2007, Journal of chromatography. A.

[65]  E. Uhlmann,et al.  Machining of micro/miniature dies and moulds by electrical discharge machining—Recent development , 2005 .

[66]  Nigel P. Hacker,et al.  Photochemistry of triarylsulfonium salts , 1990 .

[67]  Hae Woon Choi,et al.  Femtosecond laser micromachining and application of hot embossing molds for microfluid device fabrication , 2009 .

[68]  Yu. V. Khlopkov,et al.  Absorptance of powder materials suitable for laser sintering , 2000 .

[69]  M. Svoboda,et al.  Metal electrodes in plastic microfluidic systems , 2009 .

[70]  Jun-ichi Yoshida,et al.  A flow microreactor system enables organolithium reactions without protecting alkoxycarbonyl groups. , 2010, Chemistry.

[71]  Á. Végvári,et al.  A hybrid microdevice for electrophoresis and electrochromatography using UV detection , 2002, Electrophoresis.

[72]  T. Maiman Stimulated Optical Radiation in Ruby , 1960, Nature.

[73]  Holger Becker,et al.  Polymer microfabrication technologies for microfluidic systems , 2008, Analytical and bioanalytical chemistry.

[74]  Oliver Geschke,et al.  CO(2)-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems. , 2002, Lab on a chip.

[75]  Kerstin Länge,et al.  An indirect microfluidic flow injection analysis (FIA) system allowing diffusion free pumping of liquids by using tetradecane as intermediary liquid. , 2009, Lab on a chip.

[76]  H. M. Widmer,et al.  Trends in industrial analytical chemistry , 1983 .

[77]  Chong H. Ahn,et al.  Institute of Physics Publishing Journal of Micromechanics and Microengineering a Review of Microvalves , 2022 .

[78]  W. Zhong,et al.  Short fiber reinforced composites for fused deposition modeling , 2001 .

[79]  Shuichi Shoji,et al.  An all SU-8 microfluidic chip with built-in 3D fine microstructures , 2006 .

[80]  D. Paul,et al.  Lamination‐based rapid prototyping of microfluidic devices using flexible thermoplastic substrates , 2007, Electrophoresis.

[81]  Craig J. Hawker,et al.  The power of thiol‐ene chemistry , 2010 .

[82]  David Kazmer,et al.  Low Volume Plastics Manufacturing Strategies , 2007 .

[83]  Lih Feng Cheow,et al.  Rapid prototyping of microfluidic systems using a laser-patterned tape , 2007 .

[84]  Stéphane Colin,et al.  A novel fabrication method of flexible and monolithic 3D microfluidic structures using lamination of SU-8 films , 2005 .

[85]  G Medoro,et al.  Microfluidic channel fabrication in dry film resist for production and prototyping of hybrid chips. , 2005, Lab on a chip.

[86]  Eric Cattan,et al.  Micromachining SU-8 pivot structures using AZ photoresist as direct sacrificial layers for a large wing displacement , 2010 .

[87]  Brian C. Berry,et al.  Versatile platform for creating gradient combinatorial libraries via modulated light exposure. , 2007, The Review of scientific instruments.

[88]  G. Whitesides,et al.  Three-dimensional microfluidic devices fabricated in layered paper and tape , 2008, Proceedings of the National Academy of Sciences.

[89]  B. Loechel,et al.  Stress engineering and mechanical properties of SU-8-layers for mechanical applications , 2008 .

[90]  Jukka Lekkala,et al.  A maskless exposure device for rapid photolithographic prototyping of sensor and microstructure layouts , 2020 .

[91]  N. F. de Rooij,et al.  Norland optical adhesive (NOA81) microchannels with adjustable wetting behavior and high chemical resistance against a range of mid-infrared-transparent organic solvents , 2011 .

[92]  José Alberto Fracassi da Silva,et al.  Toner and paper‐based fabrication techniques for microfluidic applications , 2010, Electrophoresis.

[93]  P. C. Pandey,et al.  Plasma channel growth and the resolidified layer in edm , 1986 .

[94]  D. Golovaty,et al.  The effect of phase change materials on the frontal polymerization of a triacrylate , 2010 .

[95]  U. Kogelschatz,et al.  Applications of Microplasmas and Microreactor Technology , 2007 .

[96]  S. Mitragotri,et al.  Making polymeric micro- and nanoparticles of complex shapes , 2007, Proceedings of the National Academy of Sciences.

[97]  S. Franssila,et al.  Free-standing SU-8 microfluidic chips by adhesive bonding and release etching , 2005 .

[98]  Bong Hyun Chung,et al.  Novel poly(dimethylsiloxane) bonding strategy via room temperature "chemical gluing". , 2009, Langmuir : the ACS journal of surfaces and colloids.

[99]  George M Whitesides,et al.  What comes next? , 2011, Lab on a chip.

[100]  C. Patel,et al.  Continuous-Wave Laser Action on Vibrational-Rotational Transitions of C O 2 , 1964 .

[101]  Po Ki Yuen,et al.  Low-cost rapid prototyping of flexible microfluidic devices using a desktop digital craft cutter. , 2010, Lab on a chip.

[102]  Ryan Wicker,et al.  Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds. , 2010, Acta biomaterialia.

[103]  Corona discharge assisted thermal bonding of polymer microfluidic devices , 2010, DTIP 2010.

[104]  R. Lenk Rapid Prototyping of Ceramic Components , 2000 .

[105]  Andreas Manz,et al.  Micromachining of monocrystalline silicon and glass for chemical analysis systems A look into next century's technology or just a fashionable craze? , 1991 .

[106]  Jaephil Do,et al.  An integrated disposable device for DNA extraction and helicase dependent amplification , 2010, Biomedical microdevices.

[107]  Yoonkey Nam,et al.  Direct rapid prototyping of PDMS from a photomask film for micropatterning of biomolecules and cells. , 2009, Lab on a chip.

[108]  Yung Kang Shen,et al.  Microfluidic chip fabrication using hot embossing and thermal bonding of COP , 2010 .

[109]  Ryan B. Wicker,et al.  Fabrication of 3D Biocompatible/Biodegradable Micro-Scaffolds Using Dynamic Mask Projection Microstereolithography , 2009 .

[110]  Jianing Yang,et al.  High sensitivity PCR assay in plastic micro reactors. , 2002, Lab on a chip.

[111]  Gerald Urban,et al.  High-resolution permanent photoresist laminate for microsystem applications , 2008 .

[112]  D. Nolte,et al.  Toward 3D Microfluidic Structures Fabricated with Two-photon Laser Machining , 2007, 2007 Conference on Lasers and Electro-Optics (CLEO).

[113]  G. Whitesides,et al.  Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). , 1998, Analytical chemistry.

[114]  A. Guber,et al.  High-density plastic microfluidic platforms for capillary electrophoresis separation and high-throughput screening , 2002 .

[115]  Holger Becker,et al.  Chips, money, industry, education and the "killer application". , 2009, Lab on a chip.

[116]  G. Delapierre Micro-machining: A survey of the most commonly used processes , 1989 .

[117]  Richard S. Muller,et al.  Integrated silicon pi-fet accelerometer with proof mass , 1984 .

[118]  Mohsen A. Jafari,et al.  Processing of advanced electroceramic components by fused deposition technique , 2001 .

[119]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[120]  Jens Anders Branebjerg,et al.  Microfluidics-a review , 1993 .

[121]  J. Yeh,et al.  UV-curable PDMS-containing PU system for hydrophobic textile surface treatment , 2009 .

[122]  Juan G. Santiago,et al.  A review of micropumps , 2004 .

[124]  James A Covington,et al.  Fabrication of versatile channel flow cells for quantitative electroanalysis using prototyping. , 2010, Analytical chemistry.

[125]  Hongyuan Chen,et al.  Patterned Au/poly(dimethylsiloxane) substrate fabricated by chemical plating coupled with electrochemical etching for cell patterning. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[126]  Christian Vogt,et al.  Rapid prototyping of small size objects , 2000 .

[127]  Eunice R G O Rodrigues,et al.  Development of flow systems by direct-milling on poly(methyl methacrylate) substrates using UV-photopolymerization as sealing process. , 2009, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[128]  G. Reisse,et al.  Production of microstructures in wide-band-gap and organic materials using pulsed laser ablation at 157 nm wavelength , 2010 .

[129]  Hywel Morgan,et al.  Rapid fabrication of polymer microfluidic systems for the production of artificial lipid bilayers , 2005 .

[130]  R. Freitag,et al.  Fabrication of a versatile microanalytical system without need for clean room conditions , 2004 .

[131]  N. F. de Rooij,et al.  Microfluidics meets MEMS , 2003, Proc. IEEE.

[132]  S. Quake,et al.  Solvent Resistant Photocurable “Liquid Teflon” for Microfluidic Device Fabrication [J. Am. Chem. Soc. 2004, 126, 2322−2323]. , 2004 .

[133]  Morgan E. Hott,et al.  Fabrication of Tissue Engineered Tympanic Membrane Patches Using Computer‐Aided Design and Injection Molding , 2004, The Laryngoscope.

[134]  George M. Whitesides,et al.  Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ‘‘ink’’ followed by chemical etching , 1993 .

[135]  T. Posner Beiträge zur Kenntniss der ungesättigten Verbindungen. II. Ueber die Addition von Mercaptanen an ungesättigte Kohlenwasserstoffe , 1905 .

[136]  Masashi Watanabe Construction of refreshable microfluidic channels and electrophoresis along them , 2006 .

[137]  Thomas Henkel,et al.  Micro Flow-Through Thermocycler with Simple Meandering Channel with Symmetric Temperature Zones for Disposable PCR-Devices in Microscope Slide Format , 2008 .

[138]  Atanas Ivanov,et al.  Micromilling strategies for machining thin features , 2006 .

[139]  Chien-Hsiung Tsai,et al.  Rapid prototyping of PMMA microfluidic chips utilizing a CO2 laser , 2010 .

[140]  Holger Becker,et al.  IP or no IP: that is the question. , 2009, Lab on a chip.

[141]  Xuefei Sun,et al.  Surface-reactive acrylic copolymer for fabrication of microfluidic devices. , 2005, Analytical chemistry.

[142]  Dietrich Braun,et al.  Polymer Synthesis: Theory and Practice: Fundamentals, Methods, Experiments , 2001 .

[143]  L. Locascio,et al.  Using pattern homogenization of binary grayscale masks to fabricate microfluidic structures with 3D topography. , 2007, Lab on a chip.

[144]  Dong-Woo Cho,et al.  3D scaffold fabrication with PPF/DEF using micro-stereolithography , 2007 .

[145]  P.J. McNally,et al.  Ion implantation of Boron in GaAs MESFET's , 1984, IEEE Electron Device Letters.

[146]  H. Becker,et al.  Polymer microfluidic devices. , 2002, Talanta.

[147]  Han Tong Loh,et al.  Fabrication of 3D chitosan–hydroxyapatite scaffolds using a robotic dispensing system , 2002 .

[148]  Anders Kristensen,et al.  PMMA to SU-8 bonding for polymer based lab-on-a-chip systems with integrated optics , 2004 .

[149]  Matthias Worgull,et al.  Hot Embossing: Theory and Technology of Microreplication , 2009 .

[150]  Koji Sugioka,et al.  Three‐dimensional femtosecond laser micromachining of photosensitive glass for biomicrochips , 2010 .

[151]  Robert Liska,et al.  Water-soluble photopolymers for rapid prototyping of cellular materials , 2005 .

[152]  Y. Yagcı,et al.  Influence of Type of Initiation on Thiol–Ene “Click” Chemistry , 2010 .

[153]  C. V. van Blitterswijk,et al.  Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. , 2004, Biomaterials.

[154]  Stephen C. Danforth,et al.  Processing of Piezocomposites by Fused Deposition Technique , 2005 .

[155]  Margam Chandrasekaran,et al.  Rapid prototyping in tissue engineering: challenges and potential. , 2004, Trends in biotechnology.

[156]  Jane M. Shaw,et al.  Micromachining applications of a high resolution ultrathick photoresist , 1995 .

[157]  Duoduo Bao,et al.  Print-and-peel fabrication of microelectrodes. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[158]  Frédéric Reymond,et al.  Polymer microfluidic chips for electrochemical and biochemical analyses , 2002, Electrophoresis.

[159]  Steven A. Soper,et al.  Evaluation of micromilled metal mold masters for the replication of microchip electrophoresis devices , 2006 .

[160]  G. Whitesides,et al.  Patterned paper as a platform for inexpensive, low-volume, portable bioassays. , 2007, Angewandte Chemie.

[161]  M. Despont,et al.  SU-8: a low-cost negative resist for MEMS , 1997 .

[162]  Cheng-Wey Wei,et al.  Direct-write laser micromachining and universal surface modification of PMMA for device development , 2004 .

[163]  P. Wright,et al.  Anisotropic material properties of fused deposition modeling ABS , 2002 .

[164]  Yongnian Yan,et al.  Fabrication of porous poly(l-lactic acid) scaffolds for bone tissue engineering via precise extrusion , 2001 .

[165]  A.C.W. Lau,et al.  Precision extruding deposition and characterization of cellular poly‐ε‐caprolactone tissue scaffolds , 2004 .

[166]  C Gärtner,et al.  Polymer microfabrication methods for microfluidic analytical applications , 2000, Electrophoresis.

[167]  C. Garrett,et al.  Two-Photon Excitation in CaF 2 : Eu 2+ , 1961 .

[168]  Wolfgang Ehrfeld,et al.  State-of-the-art in microreaction technology : concepts, manufacturing and applications , 1999 .

[169]  Henrik Jensen,et al.  On-chip electro membrane extraction , 2010 .

[170]  G. Kovacs,et al.  Bulk micromachining of silicon , 1998, Proc. IEEE.

[171]  Kevin A Heyries,et al.  "Print-n-Shrink" technology for the rapid production of microfluidic chips and protein microarrays. , 2009, Lab on a chip.

[172]  Gábor Harsányi,et al.  3D Rapid Prototyping Technology (RPT) as a powerful tool in microfluidic development , 2010 .

[173]  Wantai Yang,et al.  Developments and new applications of UV-induced surface graft polymerizations , 2009 .

[174]  Alois Senefelder The Invention of Lithography , 1998 .

[175]  Noo Li Jeon,et al.  Patterned cell culture inside microfluidic devices. , 2005, Lab on a chip.

[176]  Krzysztof Matyjaszewski,et al.  Handbook of radical polymerization , 2002 .

[177]  Scott J. Hollister,et al.  Erratum: Porous scaffold design for tissue engineering , 2006 .

[178]  Frank Kohler,et al.  Poly(vinyl alcohol)‐coated microfluidic devices for high‐performance microchip electrophoresis , 2002, Electrophoresis.

[179]  A. Ricco,et al.  Peer Reviewed: Plastic Advances Microfluidic Devices , 2002 .

[180]  Christopher G. Frost,et al.  Heterogeneous catalytic synthesis using microreactor technology , 2010 .

[181]  H. Girault,et al.  Photomodification of polymer microchannels induced by static and dynamic excimer ablation: effect on the electroosmotic flow. , 2001, Analytical chemistry.

[182]  José Alberto Fracassi da Silva,et al.  A dry process for production of microfluidic devices based on the lamination of laser-printed polyester films. , 2003, Analytical chemistry.

[183]  Charles S. Henry,et al.  Ceramic microchips for capillary electrophoresis–electrochemistry , 1999 .

[184]  H. Jörnvall,et al.  A microfluidic electrocapture device in sample preparation for protein analysis by MALDI mass spectrometry. , 2003, Analytical Chemistry.

[185]  T. Johnson,et al.  Rapid microfluidic mixing. , 2002, Analytical chemistry.

[186]  George K. Knopf,et al.  Rapid fabrication of tooling for microfluidic devices via laser micromachining and hot embossing , 2008 .

[187]  Nam-Trung Nguyen,et al.  SU‐8 as a structural material for labs‐on‐chips and microelectromechanical systems , 2007, Electrophoresis.

[188]  P. Willis,et al.  Monolithic photolithographically patterned Fluorocur PFPE membrane valves and pumps for in situ planetary exploration. , 2008, Lab on a chip.

[189]  Arum Han,et al.  Micro-macro hybrid soft-lithography master (MMHSM) fabrication for lab-on-a-chip applications , 2010, Biomedical microdevices.

[190]  Mary-Ann Maher Micromachining technology for micro-optics and nano-optics V and microfabrication process technology XII : 22-24 January 2007, San Jose, California, USA , 2007 .

[191]  Maria Goeppert-Mayer Über Elementarakte mit zwei Quantensprüngen , 1931 .

[192]  Jean-Louis Viovy,et al.  New family of fluorinated polymer chips for droplet and organic solvent microfluidics. , 2011, Lab on a chip.

[193]  N. Goddard,et al.  Hybrid microfluidic sensors fabricated by screen printing and injection molding for electrochemical and electrochemiluminescence detection , 2009 .

[194]  R. Delille,et al.  Benchtop Polymer MEMS , 2006, Journal of Microelectromechanical Systems.

[195]  T. Endo,et al.  Microflow reactor synthesis of palladium nanoparticles stabilized with poly(benzyl ether) dendron ligands , 2010 .

[196]  S. H. Ng,et al.  Thermally activated solvent bonding of polymers , 2008 .

[197]  M. Koudelka-Hep,et al.  Biocompatibility of silicon-based arrays of electrodes coupled to organotypic hippocampal brain slice cultures , 2001, Brain Research.

[198]  Kevin Ke,et al.  Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates. , 2005, Analytical chemistry.

[199]  C. O'Mathúna,et al.  Rapid fabrication of microfluidic devices in poly(dimethylsiloxane) by photocopying. , 2001, Lab on a chip.

[200]  Thomas Braschler,et al.  A unified approach to dielectric single cell analysis: impedance and dielectrophoretic force spectroscopy. , 2010, Lab on a chip.

[201]  John A Rogers,et al.  A photocurable poly(dimethylsiloxane) chemistry designed for soft lithographic molding and printing in the nanometer regime. , 2003, Journal of the American Chemical Society.

[202]  I. D. Abella,et al.  Optical Double-Photon Absorption in Cesium Vapor , 1962 .

[203]  Laser fabricated microchannels inside photostructurable glass-ceramic , 2009 .

[204]  Aaron R. Wheeler,et al.  Rapid Prototyping in Copper Substrates for Digital Microfluidics , 2007 .

[205]  M. Washio,et al.  Micro- and Nano-Scale Fabrication of Fluorinated Polymers by Direct Etching Using Focused Ion Beam , 2010 .

[206]  Roland Zengerle,et al.  Centrifugal microfluidic system for primary amplification and secondary real-time PCR. , 2010, Lab on a chip.

[207]  M. Gongora-Rubio,et al.  LTCC meso-analytical system for chloride ion determination in drinking waters , 2006 .

[208]  D. Beebe,et al.  Physics and applications of microfluidics in biology. , 2002, Annual review of biomedical engineering.

[209]  Ryan B. Wicker,et al.  Fused deposition modeling of patient‐specific polymethylmethacrylate implants , 2010 .

[210]  S. Terry,et al.  A gas chromatographic air analyzer fabricated on a silicon wafer , 1979, IEEE Transactions on Electron Devices.

[211]  M. Goyal,et al.  Thermal polymerization of uniform macrocyclic ethylene terephthalate dimer , 2001 .

[212]  Philippe M. Fauchet,et al.  Electrical porous silicon chemical sensor for detection of organic solvents , 2005 .

[213]  P. Abgrall,et al.  Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review , 2007 .

[214]  Holger Becker,et al.  One size fits all? , 2010, Lab on a chip.

[215]  B. Chichkov,et al.  Rapid laser prototyping of plasmonic components , 2007 .

[216]  Ryan B. Wicker,et al.  Multi-material microstereolithography , 2010 .

[217]  T. Johnson,et al.  Laser modification of preformed polymer microchannels: application to reduce band broadening around turns subject to electrokinetic flow. , 2001, Analytical chemistry.

[218]  Jaephil Do,et al.  Maskless writing of microfluidics: Rapid prototyping of 3D microfluidics using scratch on a polymer substrate , 2011 .

[219]  Govind V Kaigala,et al.  Rapid prototyping of microfluidic devices with a wax printer. , 2007, Lab on a chip.

[220]  Emanuel Carrilho,et al.  Electrophoresis microchip fabricated by a direct‐printing process with end‐channel amperometric detection , 2004, Electrophoresis.

[221]  S. Ponrathnam,et al.  Water‐Triggered Frontal Polymerization , 2007 .

[222]  Yuliya A Kunde,et al.  Rapid prototyping of robust and versatile microfluidic components using adhesive transfer tapes. , 2010, Lab on a chip.

[223]  Siwei Zhao,et al.  Direct projection on dry-film photoresist (DP(2)): do-it-yourself three-dimensional polymer microfluidics. , 2009, Lab on a chip.

[224]  Nam-Trung Nguyen,et al.  Micromixers?a review , 2005 .

[225]  R. Bongiovanni,et al.  UV‐curable systems containing perfluoropolyether structures: Synthesis and characterisation , 1997 .

[226]  Núria Ibáñez-García,et al.  Green-tape ceramics. New technological approach for integrating electronics and fluidics in microsystems , 2008 .

[227]  J. Rossier,et al.  UV Laser Machined Polymer Substrates for the Development of Microdiagnostic Systems. , 1997, Analytical chemistry.

[228]  Limu Wang,et al.  A simple method for fabricating multi-layer PDMS structures for 3D microfluidic chips. , 2010, Lab on a chip.

[229]  Daniel T Chiu,et al.  Rapid prototyping of thermoset polyester microfluidic devices. , 2004, Analytical chemistry.

[230]  Boris N. Chichkov,et al.  Medical prototyping using two photon polymerization , 2010 .

[231]  Gwo-Bin Lee,et al.  A new fabrication process for ultra-thick microfluidic microstructures utilizing SU-8 photoresist , 2002 .

[232]  Martin A. M. Gijs,et al.  NOA 63 as a UV-curable material for fabrication of microfluidic channels with native hydrophilicity , 2010 .

[233]  S. Teoh,et al.  Polycaprolactone-based fused deposition modeled mesh for delivery of antibacterial agents to infected wounds. , 2011, Biomaterials.

[234]  M. Brunet,et al.  Advanced photoresist technologies for microsystems , 2001 .

[235]  William Leventon,et al.  Cover story: synthetic skin , 2002 .

[236]  Marlon S. Thomas,et al.  Print-and-peel fabricated passive micromixers. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[237]  Leonidas E. Ocola,et al.  Large area direct-write focused ion-beam lithography with a dual-beam microscope , 2010 .

[238]  Erol C. Harvey,et al.  Nanometer thickness laser ablation for spatial control of cell attachment , 2002 .

[239]  Frédéric Reymond,et al.  Polymer microchips bonded by O2‐plasma activation , 2002, Electrophoresis.

[240]  Aigars Piruska,et al.  The autofluorescence of plastic materials and chips measured under laser irradiation. , 2005, Lab on a chip.

[241]  Robert B. Moore,et al.  State of understanding of nafion. , 2004, Chemical reviews.

[242]  Kevin D Belfield,et al.  High-speed multiphoton absorption polymerization: fabrication of microfluidic channels with arbitrary cross-sections and high aspect ratios. , 2010, Lab on a chip.

[243]  Angeliki Tserepi,et al.  Photosensitive poly(dimethylsiloxane) materials for microfluidic applications , 2007 .

[244]  George M Whitesides,et al.  Prototyping of microfluidic devices in poly(dimethylsiloxane) using solid-object printing. , 2002, Analytical chemistry.

[245]  Bruce R. Flachsbart,et al.  Fabrication of single nanofluidic channels in poly(methylmethacrylate) films via focused-ion beam milling for use as molecular gates , 2004 .

[246]  G. Whitesides The origins and the future of microfluidics , 2006, Nature.

[247]  Rerngchai Arayanarakool,et al.  Low-temperature, simple and fast integration technique of microfluidic chips by using a UV-curable adhesive. , 2010, Lab on a chip.

[248]  C. Grigoropoulos,et al.  All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles , 2007 .

[249]  Charles E. Hoyle,et al.  Thiol–enes: Chemistry of the past with promise for the future , 2004 .

[250]  H. B. Halsall,et al.  Microfluidic immunosensor systems. , 2005, Biosensors & bioelectronics.

[251]  Jack F Douglas,et al.  Frontal photopolymerization for microfluidic applications. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[252]  D. Knapp,et al.  Plastic microchip liquid chromatography-matrix-assisted laser desorption/ionization mass spectrometry using monolithic columns. , 2006, Journal of chromatography. A.

[253]  D. Citterio,et al.  Inkjet-printed microfluidic multianalyte chemical sensing paper. , 2008, Analytical chemistry.

[254]  Yi Luo,et al.  Ultrasonic bonding for thermoplastic microfluidic devices without energy director , 2010 .

[255]  Gerald Urban,et al.  A full-wafer fabrication process for glass microfluidic chips with integrated electroplated electrodes by direct bonding of dry film resist , 2009 .

[256]  Douglas Hurd,et al.  Enhanced machining of micron-scale features in microchip molding masters by CNC milling , 2005 .

[257]  S. Quake,et al.  Microfluidics: Fluid physics at the nanoliter scale , 2005 .

[258]  Francis E. H. Tay,et al.  A novel micro-machining method for the fabrication of thick-film SU-8 embedded micro-channels , 2001 .

[259]  Chantal Khan Malek,et al.  Laser processing for bio-microfluidics applications (part I) , 2006 .

[260]  Wei Wang,et al.  Lab-on-a-print: from a single polymer film to three-dimensional integrated microfluidics. , 2009, Lab on a chip.

[261]  Kang Wang,et al.  Rapid method for design and fabrication of passive micromixers in microfluidic devices using a direct-printing process. , 2005, Lab on a chip.