Power electronics, control of the electromechanical energy conversion process and some applications

Some fundamental considerations regarding power electronics and machine electronics are discussed. The historical development of ideas in this field is examined, the applications in the field of electric traction for rail vehicles are summarised and possible future developments are outlined. A systematic approach to power electronics, based upon the control of energy flow in switching convertors, is presented. This approach takes into consideration the different possible switching functions, the modulation functions, the realisation of these switching and modulation functions, the realisation of these switching and modulation functions by practical power semiconductor switches and the different classes of forced turn-off and commutation in power electronic circuits. Subsequently the concepts of topology and structure are defined, leading to different generic topologies for singular convertors. The structure of the five different families of composite convertors are examined, and practical examples are given. The systematic approach to machine electronics presented in the paper is based on a power flow model, using the unifying concept of rotating field theory. In combination with previously defined systematics for power electronics, this enables a systematic approach to the different classes of variable speed drives, based on power flow considerations. The historical developments of some power electronic and machine electronic ideas are traced, starting at the beginning of this century. Since the introduction of power semiconductor switches, applications of the older ideas have increased exponentially in all fields, making it impossible to cover all of them. As a consequence the development of power electronics and control of machines by electronic convertors in the field of electric traction is discussed in some detail, because this represents a record of important engineering achievements in this field. In conclusion, the present state and future trends of power and machine electronics are examined. This evaluation covers the development in the field of switching devices regarding the improvement of interfacing between signal and power electronics, the decrease of switching transition times, the reduction of device losses during conduction, and device developments for decreasing energy storage devices in convertors. The development of power electronic convertors for the reduction of the number of components in the topology and the development of convertors with a high frequency link are then covered, related to the expected development of switching devices. New directions of development regarding the electronic conditioning of the electromechanical energy conversion process concerning the elimination of undesirable effects and losses are important. The implementation of these trends by utilising the improved switching characteristics of power electronic switches and the information processing capability of microprocessors is discussed. This is then extended toward control aspects, where both these characteristics enable solutions not possible hitherto. Field control of AC machines imparts control characteristics equal to, or better than, those obtainable with DC machines to the systems, while the processing capability of microprocessors allows the configuration of adaptive machine electronic systems. Finally attention is given to the interfacing of power electronic and machine electronic systems to the power supply network. If the exponential growth of the installed capacity of equipment in the future is to be handled, active compensation of the distorted currents drawn from the supply by this equipment will have to be considered seriously.

[1]  T. Nagano,et al.  A snubber-less GTO , 1982, 1982 IEEE Power Electronics Specialists conference.

[2]  W. FISHWICK,et al.  Semiconductor Controlled Rectifiers , 1965, Nature.

[3]  William D. Middleton When the Steam Railroads Electrified , 1974 .

[4]  J.J. Schoeman,et al.  A simplified maximal power controller for terrestrial photovoltaic panel arrays , 1982, 1982 IEEE Power Electronics Specialists conference.

[5]  Jacobus D. Van Wyk,et al.  Transistor Inverter Design Optimization in the Frequency Range Above 5 kHz Up to 50 kVA , 1983, IEEE Transactions on Industry Applications.

[6]  C. H. Willis Harmonic commutation for thyratron inverters and rectifiers , 1933, Electrical Engineering.

[7]  Alexander Kusko Solid State DC Motor Drives , 1969 .

[8]  Tung Hai Chin,et al.  The Principles of Eliminating Pulsating Torque in Current Source Inverter Induction Motor Systems , 1981, IEEE Transactions on Industry Applications.

[9]  Phoivos D. Ziogas,et al.  A DC-AC Power Conversion Technique Using Twin Resonant High-Frequency Links , 1983, IEEE Transactions on Industry Applications.

[10]  J. Ben Klaassens,et al.  A Controllable Secondary Multikilowatt DC Current Source With Constant Maximum Power Factor in its Three-Phase Supply Line , 1976, IEEE Transactions on Industrial Electronics and Control Instrumentation.

[11]  Makoto Azuma,et al.  Three-Phase Static Power Supplies for Air-Conditioned Electric Coaches using High Power GTO , 1981, IEEE Transactions on Industry Applications.

[12]  D. H. Pontius,et al.  Second breakdown and damage in junction devices , 1973 .

[13]  S. V. Smith Modern Efficient Silicon-Rectifier-Type Multiple-Unit Cars for Philadelphia Area Commuter Service , 1964, IEEE Transactions on Applications and Industry.

[14]  C. H. Willis,et al.  Electronic speed control of motors , 1938, Electrical Engineering.

[15]  John M. D. Murphy,et al.  A Comparison of PWM Strategies for Inverter-Fed Induction Motors , 1983, IEEE Transactions on Industry Applications.

[16]  B.J. Baliga The asymmetrical field-controlled thyristor , 1980, IEEE Transactions on Electron Devices.

[17]  W. Lienau,et al.  Der Vierquadrantensteller bei induktivem und kapazitivem Betrieb , 1984 .

[18]  J. E. Brown,et al.  Electrical variable-speed drives , 1984 .

[19]  H. S. Ogden A Unique Propulsion System for Electric Multiple-Unit Cars for Philadelphia-Area Commuter Service , 1964, IEEE Transactions on Applications and Industry.

[20]  Richard G. Hoft,et al.  Generalized Techniques of Harmonic Elimination and Voltage Control in Thyristor Inverters: Part I--Harmonic Elimination , 1973 .

[21]  Andrew J. Humphrey Inverter Commutation Circuits , 1968 .

[22]  A. Bolliger,et al.  Die Hochspannungs-Gleichstrommaschine: Eine grundlegende Theorie , 2022 .

[23]  Jacobus Daniel van Wyk,et al.  A Comparative Investigation of a Three-Phase Induction Machine Drive with a Component Minimized Voltage-Fed Inverter under Different Control Options , 1984 .

[24]  Othmar K. Marti The Mercury Arc Rectifier Applied to A-C. Railway Electrification , 1932, Transactions of the American Institute of Electrical Engineers.

[25]  R. G. Hoft,et al.  Principles of inverter circuits , 1985 .

[26]  S. P. Gaur,et al.  Power Transistor Crystal Damage in Inductive Load Switching: A Reliability Concern , 1977, 15th International Reliability Physics Symposium.

[27]  P. W. Webb Measurement of thermal transients in semiconductor power devices and circuits , 1983 .

[28]  M. Ramamoorty,et al.  An Introduction to Thyristors and Their Applications , 1979 .

[29]  Toshitarō Takeuchi,et al.  Theory of SCR circuit and application to motor control , 1968 .

[30]  L. O. Grondahl,et al.  THEORIES OF A NEW SOLID JUNCTION RECTIFIER. , 1926, Science.

[31]  Rainer Jäger Leistungselektronik, Grundlagen und Anwendungen , 1977 .

[32]  Robin J. Evans,et al.  Nonlinear Adaptive Control of an Inverter-Fed Induction Motor Linear Load Case , 1983, IEEE Transactions on Industry Applications.

[33]  B M Bird,et al.  An Introduction to Power Electronics , 1983 .

[34]  Michael H. McLaughlin,et al.  Power Semiconductor Equipment Cooling Methods and Application Criteria , 1975, IEEE Transactions on Industry Applications.

[35]  Luis J. Garces Parameter Adaption for the Speed-Controlled Static AC Drive with a Squirrel-Cage Induction Motor , 1980, IEEE Transactions on Industry Applications.

[36]  Abraham Alexandrovitz,et al.  Analysis of a Static VAR Compensator with Optimal Energy Storage Element , 1984, IEEE Transactions on Industrial Electronics.

[37]  Abraham Alexandrovitz,et al.  Analysis of a Reactive Current Source Used to Improve Current Drawn by Static Inverters , 1979, IEEE Transactions on Industrial Electronics and Control Instrumentation.

[38]  William McMurray,et al.  The Theory and Design of Cycloconverters , 1972 .

[39]  A. Hoffmann,et al.  Thyristor-Handbuch - Der Thyristor ALS Bauelement der Leistungselektronik , 1965 .

[40]  E. W. Ames,et al.  Ignitron multiple-unit cars for the new haven railroad , 1955, Electrical Engineering.

[41]  G. Bange Die Störungsdiagnose leittechnischer Einrichtungen auf Schienenfahrzeugen , 1985 .

[42]  K. Marti,et al.  Stromrichter unter besonderer Berücksichtigung der Quecksilberdampf-Grossgleichrichter , 1933 .

[43]  P. C. Sen,et al.  Thyristor DC drives , 1981 .

[44]  W. Shepherd,et al.  Thyristor control of AC circuits , 1976 .

[45]  Bob Dale,et al.  Silicon rectifier handbook , 1966 .

[46]  W. Schilling,et al.  Zur Regelung von Gleichstrommotoren über gittergesteuerte Gleichrichter , 1935 .

[47]  K. Blaufuß Drehzahlregelung von Gleichstrommotoren durch Stromstöße , 1940 .

[48]  A. H. Beiler The thyratron motor at the Logan plant , 1938, Transactions of the American Institute of Electrical Engineers.

[49]  David Finney,et al.  The Power Thyristor and Its Applications , 1980 .

[50]  Colin D. Schauder,et al.  High Performance Torque-Controlled Induction Motor Drives , 1983, IEEE Transactions on Industry Applications.

[51]  Angelo Ferraro,et al.  An overview of low-loss snubber technology for transistor converters , 1982, 1982 IEEE Power Electronics Specialists conference.

[52]  J. M. Goldey,et al.  P-N-P-N Transistor Switches , 1956, Proceedings of the IRE.

[53]  Ronald J. Gutmann,et al.  Application of RF Circuit Design Principles to Distributed Power Converters , 1980, IEEE Transactions on Industrial Electronics and Control Instrumentation.

[54]  Tung Hai Chin A New Controlled Current Type Inverter with Improved Performance , 1979, IEEE Transactions on Industry Applications.

[55]  P. Lenz Gittergesteuerte Gasentladung als regelbarer Wechselstromwiderstand , 1933 .

[56]  T Katta,et al.  THYRISTOR CHOPPER-CONTROLLED ELECTRIC CARS IN JAPAN , 1980 .

[57]  Bimal K. Bose,et al.  Adjustable speed AC drive systems , 1981 .

[58]  Yasuo Matsuda,et al.  Parallel Operation Techniques of GTO Inverter Sets for Large AC Motor Drives , 1983, IEEE Transactions on Industry Applications.

[59]  F. D. Gowans Rectifier locomotives for the New York, New Haven and Hartford Railroad , 1955, Transactions of the American Institute of Electrical Engineers, Part II: Applications and Industry.

[60]  S. Gaur,et al.  Transistor design and thermal stability , 1973 .

[61]  G. K. Dubey,et al.  A comparative study of some chopper commutation circuits , 1982 .

[62]  M.S. Adler,et al.  A comparison between BIMOS device types , 1986, IEEE Transactions on Electron Devices.

[63]  Cyril W. Lander Power Electronics , 1981 .

[64]  Th. Wasserrab Schaltungslehre der Stromrichtertechnik , 1962 .

[65]  Jd van Wyk,et al.  Power- and machine-electronics 1914-1966:a selected bibliography and review on the electronic control of electrical machines , 1966 .

[66]  A. W. Hull,et al.  Gas-Filled Thermionic Tubes , 1928, Transactions of the American Institute of Electrical Engineers.

[67]  Giuseppe S. Buja,et al.  Optimal Pulsewidth Modulation for Feeding AC Motors , 1977, IEEE Transactions on Industry Applications.

[68]  Frederick N. Tompkins,et al.  The Parallel Type Inverter , 1932, Transactions of the American Institute of Electrical Engineers.

[69]  Rex Mountford Davis,et al.  Power Diode and Thyristor Circuits , 1971 .

[70]  J. Nishizawa,et al.  Field-effect transistor versus analog transistor (static induction transistor) , 1975, IEEE Transactions on Electron Devices.

[71]  L. Gyugyi,et al.  Static power frequency changers: Theory, performance, and application , 1976 .

[72]  Boyd Larson,et al.  Power Control Electronics , 1983 .

[73]  Fritz Hermann Kesselring,et al.  Theoretische und experimentelle Untersuchung über den rotierenden Gleichrichter , 2022 .

[74]  Laszlo Gyugyi,et al.  Characteristics of Static, Thyristor-Controlled Shunt Compensators for Power Transmission System Applications , 1980, IEEE Transactions on Power Apparatus and Systems.

[75]  S. B. Dewan,et al.  Power Semiconductor Circuits , 1975 .

[76]  Egon C. Andersen,et al.  On the Torques and Losses of Voltage- and Current-Source Inverter Drives , 1984, IEEE Transactions on Industry Applications.

[77]  Hansruedi Bühler Einführung in die Theorie geregelter Gleichstromantriebe , 1977 .

[78]  M.S. Adler,et al.  Power semiconductor switching devices—A comparison based on inductive switching , 1982, IEEE Transactions on Electron Devices.

[79]  Takuzo Ogawa,et al.  Newly Developed Thyristor Chopper Equipment for Electric Railcars , 1973 .

[80]  Masao Yano,et al.  Suppression and Measurement of Arc Furnace Flicker with a Large Static Var Compensator , 1979, IEEE Transactions on Power Apparatus and Systems.