Prediction of CO 2 ‐Oil Minimum Miscibility Pressure Using Soft Computing Methods

[1]  Artur Gil,et al.  Using a stochastic gradient boosting algorithm to analyse the effectiveness of Landsat 8 data for montado land cover mapping: Application in southern Portugal , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[2]  A. Fazlali,et al.  Prediction of minimum miscibility pressure in oil reservoirs using a modified SAFT equation of state , 2013 .

[3]  Mohammad Ali Ahmadi,et al.  Estimation of H2S solubility in ionic liquids using a rigorous method , 2014 .

[4]  W. F. Yellig,et al.  Determination and Prediction of CO2 Minimum Miscibility Pressures (includes associated paper 8876 ) , 1980 .

[5]  Abdolhamid Salahi,et al.  Experimental investigation, modeling and optimization of membrane separation using artificial neural network and multi-objective optimization using genetic algorithm , 2013 .

[6]  Z. Zhong,et al.  Application of mixed kernels function (MKF) based support vector regression model (SVR) for CO2 - Reservoir oil minimum miscibility pressure prediction , 2016 .

[7]  Amir H. Mohammadi,et al.  Determination of minimum miscibility pressure in N2–crude oil system: A robust compositional model , 2016 .

[8]  E. M. El-M. Shokir,et al.  CO2–oil minimum miscibility pressure model for impure and pure CO2 streams , 2007 .

[9]  J. Friedman Stochastic gradient boosting , 2002 .

[10]  R. Johns,et al.  Effect of Dispersion on Local Displacement Efficiency for Multicomponent Enriched-Gas Floods Above the Minimum Miscibility Enrichment , 2002 .

[11]  Amir H. Mohammadi,et al.  Experimental Study and Modeling of Ultrafiltration of Refinery Effluents Using a Hybrid Intelligent Approach , 2013 .

[12]  Alireza Bahadori,et al.  Toward genetic programming (GP) approach for estimation of hydrocarbon/water interfacial tension , 2017 .

[13]  Amir H. Mohammadi,et al.  Improved estimation of Cetane number of fatty acid methyl esters (FAMEs) based biodiesels using TLBO-NN and PSO-NN models , 2018, Fuel.

[14]  Bing Yan,et al.  Prediction of sand ripple geometry under waves using an artificial neural network , 2008, Comput. Geosci..

[15]  S. Ayatollahi,et al.  A rigorous approach to predict nitrogen-crude oil minimum miscibility pressure of pure and nitrogen mixtures , 2015 .

[16]  James P. Johnson,et al.  Measurement And Correlation Of CO2 Miscibility Pressures , 1981 .

[17]  J. Jaubert,et al.  Integrating support vector regression with genetic algorithm for CO 2 -oil minimum miscibility pressure (MMP) in pure and impure CO 2 streams , 2016 .

[18]  Tayfun Dede,et al.  Estimates of energy consumption in Turkey using neural networks with the teaching–learning-based optimization algorithm , 2014 .

[19]  R. V. Rao,et al.  Optimal design of the heat pipe using TLBO (teaching–learning-based optimization) algorithm , 2015 .

[20]  A. Bahadori,et al.  Prediction of the binary surface tension of mixtures containing ionic liquids using Support Vector Machine algorithms , 2015 .

[21]  A. Mohammadi,et al.  Estimation of minimum miscibility pressure (MMP) in enhanced oil recovery (EOR) process by N2 flooding using different computational schemes , 2019, Fuel.

[22]  F. Orr,et al.  Interpretation of Pressure-Composition Phase Diagrams for CO2/Crude-Oil Systems , 1984 .

[23]  Xu Chen,et al.  A hybrid teaching-learning artificial neural network for building electrical energy consumption prediction , 2018, Energy and Buildings.

[24]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[25]  Farhad Gharagheizi,et al.  Intelligent model for prediction of CO2 – Reservoir oil minimum miscibility pressure , 2013 .

[26]  Hani S. Mitri,et al.  Comparative performance of six supervised learning methods for the development of models of hard rock pillar stability prediction , 2015, Natural Hazards.

[27]  A. Hashemi,et al.  New empirical correlations for determination of Minimum Miscibility Pressure (MMP) during N2-contaminated lean gas flooding , 2018, Journal of the Taiwan Institute of Chemical Engineers.

[28]  A. Bahadori,et al.  Prediction of natural gas hydrate inhibitor vaporization rate using particle swarm optimization approach , 2016 .

[29]  R. Venkata Rao,et al.  Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems , 2011, Comput. Aided Des..

[30]  Mohammad Ali Ahmadi,et al.  Connectionist model for predicting minimum gas miscibility pressure: Application to gas injection process , 2015 .

[31]  F. Gharagheizi,et al.  Rapid method to estimate the minimum miscibility pressure (MMP) in live reservoir oil systems during CO2 flooding , 2015 .

[32]  H. Sarma,et al.  An Investigation of Minimum Miscibility Pressure for CO2 - Rich Injection Gases with Pentanes-Plus Fraction , 2005 .

[33]  D. Rao,et al.  Comparative Evaluation of a New MMP Determination Technique , 2006 .

[34]  Robert M. Enick,et al.  A Thermodynamic Correlation for the Minimum Miscibility Pressure in CO2 Flooding of Petroleum Reservoirs , 1988 .

[35]  B. Dabir,et al.  Modeling minimum miscibility pressure during pure and impure CO 2 flooding using hybrid of radial basis function neural network and evolutionary techniques , 2018 .

[36]  Mohammad H. Aminfar,et al.  Integrated ANN model for earthfill dams seepage analysis: Sattarkhan Dam in Iran , 2012, Artif. Intell. Res..

[37]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[38]  H. Li,et al.  An Improved CO2–Oil Minimum Miscibility Pressure Correlation for Live and Dead Crude Oils , 2012 .

[39]  Alireza Bahadori,et al.  Implementing radial basis function networks for modeling CO2-reservoir oil minimum miscibility pressure , 2013 .

[40]  Abouzar Choubineh,et al.  Improved predictions of wellhead choke liquid critical-flow rates: Modelling based on hybrid neural network training learning based optimization , 2017 .

[41]  Alireza Bahadori,et al.  A developed smart technique to predict minimum miscible pressure—eor implications , 2013 .

[42]  F. S. Kovarik,et al.  A Minimum Miscibility Pressure Study Using Impure CO2 and West Texas Oil Systems: Data Base, Correlations, and Compositional Simulation , 1985 .

[43]  R. Berk,et al.  Small Area Estimation of the Homeless in Los Angeles: An Application of Cost-Sensitive stochastic Gradient Boosting , 2010, 1011.2890.

[44]  Mahmood Amani,et al.  Effective Thermal Conductivity Modeling of Sandstones: SVM Framework Analysis , 2016 .

[45]  R. Venkata Rao,et al.  An improved teaching-learning-based optimization algorithm for solving unconstrained optimization problems , 2012, Sci. Iran..

[46]  A. Bahadori,et al.  A computational intelligence scheme for prediction equilibrium water dew point of natural gas in TEG dehydration systems , 2014 .

[47]  O. Glaso,et al.  Generalized minimum miscibility pressure correlation , 1985 .

[48]  R. S. Wenger,et al.  Correlation of Minimum Miscibility Pressure for Impure CO2 Streams , 1985 .

[49]  Alireza Baghban,et al.  Estimating hydrogen sulfide solubility in ionic liquids using a machine learning approach , 2014 .

[50]  Simone Giacosa,et al.  Investigating the use of gradient boosting machine, random forest and their ensemble to predict skin flavonoid content from berry physical-mechanical characteristics in wine grapes , 2015, Comput. Electron. Agric..

[51]  V. Ediger,et al.  ARIMA forecasting of primary energy demand by fuel in Turkey , 2007 .

[52]  A. Bahadori,et al.  A new decision tree based algorithm for prediction of hydrogen sulfide solubility in various ionic liquids , 2017 .

[53]  Mohammad Sharifi,et al.  Application of adaptive neuro fuzzy interface system optimized with evolutionary algorithms for modeling CO2-crude oil minimum miscibility pressure , 2017 .

[54]  A. Bahadori,et al.  Evolving an Accurate Decision Tree‐Based Model for Predicting Carbon Dioxide Solubility in Polymers , 2020 .

[55]  Hemanta Kumar Sarma,et al.  Use of genetic algorithm to estimate CO2–oil minimum miscibility pressure—a key parameter in design of CO2 miscible flood , 2005 .

[56]  Navid Alavi Shoushtari,et al.  Characterizing CO2 capture with aqueous solutions of LysK and the mixture of MAPA + DEEA using soft computing methods , 2018, Energy.

[57]  Mohammad Ranjbar,et al.  A CO2-Oil Minimum Miscibility Pressure Model Based on Multi-Gene Genetic Programming , 2013 .

[58]  G. P. Kokolis,et al.  CO2 Minimum Miscibility Pressure: A Correlation for Impure CO2 Streams and Live Oil Systems , 1985 .

[59]  Behzad Pouladi,et al.  Connectionist technique estimates H2S solubility in ionic liquids through a low parameter approach , 2015 .

[60]  M. Ahmadi,et al.  A reliable strategy to calculate minimum miscibility pressure of CO2-oil system in miscible gas flooding processes , 2017 .

[61]  R. Soleimani,et al.  Modeling CO2 absorption in aqueous solutions of DEA, MDEA, and DEA + MDEA based on intelligent methods , 2020, Separation Science and Technology.

[62]  Guohe Huang,et al.  Development of an artificial neural network model for predicting minimum miscibility pressure in CO2 flooding , 2003 .

[63]  S. A. M. Dehghani,et al.  Minimum miscibility pressure prediction based on a hybrid neural genetic algorithm , 2008 .

[64]  Alireza Rostami,et al.  Genetic Programming (GP) Approach for Prediction of Supercritical CO2 Thermal Conductivity , 2017 .

[65]  Alireza Bahadori,et al.  Determination of oil well production performance using artificial neural network (ANN) linked to the particle swarm optimization (PSO) tool , 2015 .

[66]  Habib Rostami,et al.  Application of hybrid neural particle swarm optimization algorithm for prediction of MMP , 2014 .

[67]  Kaiyun Fu,et al.  The genetic algorithm based back propagation neural network for MMP prediction in CO2-EOR process , 2014 .

[68]  R. Soleimani,et al.  Estimation of Interfacial Tension for Geological CO2Storage , 2019, Chemical Engineering & Technology.