On the temperature dependence of fast electron transport in crystal lattices

AbstractBuilding upon the findings of Muto et al. [Phys. Lett. A 136, 33 (1989)] and Marchesoni and Lucheroni [Phys. Rev. E 44, 5303 (1991)] about the growth of the number of (anharmonic) lattice solitons with increasing temperature and using a recent transport theory developed by the present authors [A.P. Chetverikov, W. Ebeling, G. Röpke, M.G. Velarde, Eur. Phys. J. B 87, 153 (2014)] here we provide the fractional power law of the temperature dependence of resistivity in a rather general model for one-dimensional crystal lattices as, e.g., conducting polymers. We also show that the determining factor for the transport is the possibility of forming electron-soliton bound states (in short solectrons) with a most significant contribution arising from the (bosonic) bound state of two electrons to a soliton (in short bisolectrons).

[1]  Alwyn C. Scott,et al.  Thermally generated solitons in a toda lattice model of DNA , 1989 .

[2]  Efetov,et al.  Localization transition in a random network of metallic wires: A model for highly conducting polymers. , 1993, Physical review letters.

[3]  A. Ovchinnikov,et al.  Quasi-one-dimensional percolation model for the conductivity of doped organic semiconductors , 1991 .

[4]  S. I. Pekar,et al.  Untersuchungen über die Elektronentheorie der Kristalle , 1954 .

[5]  V. V. Bryksin,et al.  Hopping Conduction in Solids , 1985 .

[6]  T. Holstein,et al.  Studies of polaron motion: Part II. The “small” polaron , 1959 .

[7]  M. Dressel,et al.  Comprehensive transport study of anisotropy and ordering phenomena in quasi-one-dimensional(TMTTF)2Xsalts (X=PF6,AsF6,SbF6,BF4,ClO4,ReO4) , 2010, 1011.2856.

[8]  T. Holstein,et al.  Studies of polaron motion: Part II. The “small” polaron , 1959 .

[9]  Alwyn C. Scott,et al.  Davydov’s Soliton , 1992 .

[11]  E. G. Wilson A new theory of acoustic solitary-wave polaron motion , 1983 .

[12]  K. Bechgaard,et al.  EPR and electrical conductivity of the organic superconductor di-tetramethyltetraselenafulvalenium-perchlorate, (TMTSF)2ClO4 and a metastable magnetic state obtained by fast cooling , 1982 .

[13]  W. Ebeling,et al.  Compounds of paired electrons and lattice solitons moving with supersonic velocity. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Werner Ebeling,et al.  High electrical conductivity in nonlinear model lattice crystals mediated by thermal excitation of solectrons , 2014 .

[15]  Marchesoni,et al.  Soliton density in an infinite Toda lattice. , 1991, Physical review. B, Condensed matter.

[16]  Savin,et al.  Supersonic mechanisms for charge and energy transfers in anharmonic molecular chains. , 1996, Physical review. B, Condensed matter.

[17]  Bernhard Wessling,et al.  Electrical conductivity in heterogeneous polymer systems. V (1): Further experimental evidence for a phase transition at the critical volume concentration , 1991 .

[18]  Portugal,et al.  Quartic Lattice Interactions, Soliton-Like Excitations, and Electron Pairing in One-Dimensional Anharmonic Crystals , 2011, 1109.3992.

[19]  Manuel G. Velarde,et al.  Soliton-Mediated electron Pairing , 2008, Int. J. Bifurc. Chaos.

[20]  W. Ebeling,et al.  Electron pairing in one‐dimensional anharmonic crystal lattices , 2010, 1011.5818.

[21]  H. Kaneko,et al.  Electrical conductance in metallic phases of fully doped polyacetylene , 1994 .

[22]  E. Heine,et al.  Untersuchungen über die Reihe . , 1847 .

[23]  J. Brédas,et al.  Polarons, bipolarons, and solitons in conducting polymers , 1985 .

[24]  Alan J. Heeger,et al.  Solitons in polyacetylene , 1979 .