A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus 'Methylomirabilis oxyfera'.

Biological methane oxidation proceeds either through aerobic or anaerobic pathways. The newly discovered bacterium Candidatus 'Methylomirabilis oxyfera' challenges this dichotomy. This bacterium performs anaerobic methane oxidation coupled to denitrification, but does so in a peculiar way. Instead of scavenging oxygen from the environment, like the aerobic methanotrophs, or driving methane oxidation by reverse methanogenesis, like the methanogenic archaea in sulfate-reducing systems, it produces its own supply of oxygen by metabolizing nitrite via nitric oxide into oxygen and dinitrogen gas. The intracellularly produced oxygen is then used for the oxidation of methane by the classical aerobic methane oxidation pathway involving methane mono-oxygenase. The present mini-review summarizes the current knowledge about this process and the micro-organism responsible for it.

[1]  W. Zumft,et al.  Nitric oxide reductases of prokaryotes with emphasis on the respiratory, heme-copper oxidase type. , 2005, Journal of inorganic biochemistry.

[2]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[3]  Thomas E Hanson,et al.  Methanotrophic bacteria. , 1996, Microbiological reviews.

[4]  Thomas D. Brock,et al.  Anaerobic Methane Oxidation: Occurrence and Ecology , 1980, Applied and environmental microbiology.

[5]  F. Widdel,et al.  Energetic and Other Quantitative Aspects of Microbial Hydrocarbon Utilization , 2010 .

[6]  Philippe Van Cappellen,et al.  Kinetic modeling of microbially-driven redox chemistry of subsurface environments : coupling transport, microbial metabolism and geochemistry , 1998 .

[7]  Stefan Schouten,et al.  Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. , 2009, Environmental microbiology reports.

[8]  T. Ferenci,et al.  The carbon assimilation pathways of Methylococcus capsulatus, Pseudomonas methanica and Methylosinus trichosporium (OB3B) during growth on methane. , 1974, The Biochemical journal.

[9]  Marnix H Medema,et al.  Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. , 2008, Environmental microbiology.

[10]  Ming L. Wu,et al.  Physiological role of the respiratory quinol oxidase in the anaerobic nitrite-reducing methanotroph 'Candidatus Methylomirabilis oxyfera'. , 2011, Microbiology.

[11]  Seigo Shima,et al.  Methane as Fuel for Anaerobic Microorganisms , 2008, Annals of the New York Academy of Sciences.

[12]  N. Birkeland,et al.  Methane oxidation at 55°C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum , 2008, Proceedings of the National Academy of Sciences.

[13]  K. Knittel,et al.  Anaerobic oxidation of methane: progress with an unknown process. , 2009, Annual review of microbiology.

[14]  R. Zeng,et al.  Enrichment of denitrifying anaerobic methane oxidizing microorganisms. , 2009, Environmental microbiology reports.

[15]  B. McFadden,et al.  Comparative structure, function and regulation of isocitrate lyase, an important assimilatory enzyme. , 1990, Comparative biochemistry and physiology. B, Comparative biochemistry.

[16]  S. Kengen,et al.  Purification and characterization of chlorite dismutase: a novel oxygen-generating enzyme , 1996, Archives of Microbiology.

[17]  Ming L. Wu,et al.  Nitrite-driven anaerobic methane oxidation by oxygenic bacteria , 2010, Nature.

[18]  M. Lidstrom,et al.  Glyoxylate Regeneration Pathway in the Methylotroph Methylobacterium extorquens AM1 , 2002, Journal of bacteriology.

[19]  R. S. Hanson,et al.  Oxidation of methane in the absence of oxygen in lake water samples , 1979, Applied and environmental microbiology.

[20]  Mike S. M. Jetten,et al.  Enrichment and Molecular Detection of Denitrifying Methanotrophic Bacteria of the NC10 Phylum , 2009, Applied and Environmental Microbiology.

[21]  J. Griffioen Comment on ‘Kinetic modelling of microbially-driven redox chemistry of subsurface environments: Coupling transport, microbial metabolism and geochemistry’ by K.S. Hunter, Y. Wang and P. van Cappellen☆ , 1999 .

[22]  R. Barnes,et al.  Methane production and consumption in anoxic marine sediments , 1976 .

[23]  M. N. Poglazova,et al.  Bacterial mats on coral-like structures at methane seeps in the Black Sea , 1997 .

[24]  S. Giovannoni,et al.  The uncultured microbial majority. , 2003, Annual review of microbiology.

[25]  A. Pol,et al.  Methanotrophy below pH 1 by a new Verrucomicrobia species , 2007, Nature.

[26]  Olaf Pfannkuche,et al.  A marine microbial consortium apparently mediating anaerobic oxidation of methane , 2000, Nature.

[27]  P. Postma,et al.  Escherichia coli is unable to produce pyrroloquinoline quinone (PQQ). , 1997, Microbiology.

[28]  Seigo Shima,et al.  Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic Archaea. , 2005, Current opinion in microbiology.

[29]  Peter G. Brewer,et al.  Methane-consuming archaebacteria in marine sediments , 1999, Nature.

[30]  Tori M. Hoehler,et al.  Field and laboratory studies of methane oxidation in an anoxic marine sediment: Evidence for a methanogen‐sulfate reducer consortium , 1994 .

[31]  J. Murrell,et al.  Metabolic aspects of aerobic obligate methanotrophy. , 2008, Advances in applied microbiology.

[32]  R. Whittenbury,et al.  Enrichment, isolation and some properties of methane-utilizing bacteria. , 1970, Journal of general microbiology.

[33]  Mike S. M. Jetten,et al.  A microbial consortium couples anaerobic methane oxidation to denitrification , 2006, Nature.

[34]  M. Nei,et al.  MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. , 2007, Molecular biology and evolution.

[35]  M. Strous,et al.  Anaerobic oxidation of methane and ammonium. , 2004, Annual review of microbiology.

[36]  J. Heider Adding handles to unhandy substrates: anaerobic hydrocarbon activation mechanisms. , 2007, Current opinion in chemical biology.