The structure of 55-atom Cu–Au bimetallic clusters: Monte Carlo study

Abstract.We have investigated segregation phenomena in Cu–Au bimetallic clusters with decahedral structures at 100 K and 300 K, based on the second-moment approximation of the tight-binding (TB-SMA) potentials by using Monte Carlo method. The simulation results indicate that there are three regions (split, three-shell onion-like and core-shell region) at 100 K and two regions (split and core-shell) at 300 K with the structure of decahedral clusters, as the chemical potential difference Δμ changes. It is found that the structure of decahedral clusters undergoes a division into smaller clusters in the split region. In the core-shell structure, Au atoms are enriched in surface and Cu atoms occupy the core of the clusters because of the different surface energy of Cu and Au. The Au atoms are enriched in the surface shell, and the Cu atoms are in the middle shell, while a single Au atom is located in the center to form the three-shell onion-like structure. The structure and binding energy of smaller clusters after splitting are also discussed. The Au atoms generally lie on the surface of the smaller clusters after splitting.

[1]  M. Hou,et al.  Atomic-scale modeling of cluster-assembled (formula presented) thin films , 2002 .

[2]  Rosato,et al.  Tight-binding potentials for transition metals and alloys. , 1993, Physical review. B, Condensed matter.

[3]  Alonso,et al.  Embedded-atom method applied to bimetallic clusters: The Cu-Ni and Cu-Pd systems. , 1994, Physical review. B, Condensed matter.

[4]  Naoki Toshima,et al.  Bimetallic nanoparticles—novel materials for chemical and physical applications , 1998 .

[5]  J. Sinfelt,et al.  Bimetallic Catalysts: Discoveries, Concepts, and Applications , 1983 .

[6]  H. Deng,et al.  Atomistic simulation of the segregation profiles in Mo Re random alloys , 2003 .

[7]  P. Wynblatt,et al.  Surface composition of dilute copper-gold alloys , 1990 .

[8]  M. Baskes,et al.  Monte Carlo simulations of segregation in Pt-Ni catalyst nanoparticles. , 2004, The Journal of chemical physics.

[9]  P. A. Marcos,et al.  Structural and dynamical properties of Cu–Au bimetallic clusters , 1996 .

[10]  Y. Mishin,et al.  Monte Carlo modeling of low-index surfaces in stoichiometric and Ni-rich NiAl , 2003 .

[11]  F Baletto,et al.  Growth of three-shell onionlike bimetallic nanoparticles. , 2003, Physical review letters.

[12]  H. Polatoglou,et al.  Monte Carlo study of the [001] surface of Cu 3 Au for T ≠ 0 K , 1999 .

[13]  J. Doye,et al.  Adsorption and diffusion on nanoclusters of C60 molecules , 2003 .

[14]  F. Baletto,et al.  Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects , 2005 .

[15]  M. Hove,et al.  Quantitative prediction of surface segregation in bimetallic Pt–M alloy nanoparticles (M = Ni, Re, Mo) , 2005 .

[16]  S. Mróz,et al.  Application of directional AES for nondestructive depth profile analysis of an Au-Cu alloy , 1997 .

[17]  F Baletto,et al.  Magic polyicosahedral core-shell clusters. , 2004, Physical review letters.

[18]  Charles Vardeman,et al.  OOPSE: An object‐oriented parallel simulation engine for molecular dynamics , 2005, J. Comput. Chem..

[19]  T. Yonezawa,et al.  Structural analysis of polymer-protected palladium/platinum bimetallic clusters as dispersed catalysts by using extended x-ray absorption fine structure spectroscopy , 1991 .

[20]  P. Abel,et al.  Surface segregation in ternary alloys , 2000 .

[21]  M. Hou,et al.  Surface effects on structural and thermodynamic properties of Cu3Au nanoclusters , 2004 .

[22]  H. Deng,et al.  Monte Carlo simulation of the surface segregation of Pt–Pd and Pt–Ir alloys with an analytic embedded-atom method , 2002 .

[23]  E. Taglauer,et al.  Surface segregation studied by low-energy ion scattering: experiment and numerical simulation , 2004 .

[24]  M. Baskes,et al.  Surface structures of cubo-octahedral Pt-Mo catalyst nanoparticles from Monte Carlo simulations. , 2005, The journal of physical chemistry. B.

[25]  E. Leiva,et al.  Collision as a way of forming bimetallic nanoclusters of various structures and chemical compositions. , 2005, The Journal of chemical physics.

[26]  K. Asakura,et al.  Catalytic activity and structural analysis of polymer-protected gold/palladium bimetallic clusters prepared by the successive reduction of hydrogen tetrachloroaurate(III) and palladium dichloride , 1992 .

[27]  Minyung Lee,et al.  Preparation and characterization of Au–Ag and Au–Cu alloy nanoparticles in chloroform , 2003 .

[28]  Roy L. Johnston,et al.  A theoretical study of atom ordering in copper–gold nanoalloy clusters , 2002 .

[29]  H. Dosch,et al.  Surface segregation in Cu3Au(001) , 1996 .

[30]  Roy L. Johnston,et al.  Investigation of geometric shell aluminum clusters using the Gupta many-body potential , 2000 .

[31]  Foiles,et al.  Calculation of the surface segregation of Ni-Cu alloys with the use of the embedded-atom method. , 1985, Physical review. B, Condensed matter.

[32]  C. Creemers,et al.  Monte Carlo simulation of Cu segregation and ordering at the (110) surface of Cu75Pd25 , 1998 .

[33]  M. Hou,et al.  A Monte Carlo study of the thermal properties of Cu3Au low index surfaces , 1997 .

[34]  Roy L. Johnston,et al.  Geometries and segregation properties of platinum–palladium nanoalloy clusters , 2002 .

[35]  T. Yonezawa,et al.  Structural Analysis of Polymer-Protected Pd/Pt Bimetallic Clusters as Dispersed Catalysts by Using Extended X-Ray Absorption Fine Structure Spectroscopy. , 1991 .

[36]  Julius Jellinek,et al.  NinAlm alloy clusters: analysis of structural forms and their energy ordering , 1996 .

[37]  Alonso,et al.  Atomic structure and segregation in alkali-metal heteroclusters. , 1990, Physical review. B, Condensed matter.

[38]  Shiping Huang,et al.  Melting of Bimetallic Cu−Ni Nanoclusters , 2002 .

[39]  M. Hou,et al.  Structural and thermodynamic properties of elemental and bimetallic nanoclusters: an atomic scale study , 2000 .

[40]  W. Möller,et al.  Can core/shell nanocrystals be formed by sequential ion implantation? Predictions from kinetic lattice Monte Carlo simulations , 1999 .

[41]  Said Salhi,et al.  Theoretical investigation of isomer stability in platinum–palladium nanoalloy clusters , 2004 .

[42]  M. Ferrari,et al.  Metal nanocluster formation in silica films prepared by rf-sputtering: an experimental study , 2002 .

[43]  M. José-Yacamán,et al.  Molecular dynamics study of bimetallic nanoparticles: the case of AuxCuy alloy clusters , 2003 .

[44]  E. Krissinel,et al.  13-Atom NiAl alloy clusters: correlation between structural and dynamical properties , 1997 .

[45]  Roy L. Johnston,et al.  Theoretical study of Cu–Au nanoalloy clusters using a genetic algorithm , 2002 .

[46]  Giulia Rossi,et al.  Global optimization of bimetallic cluster structures. I. Size-mismatched Ag-Cu, Ag-Ni, and Au-Cu systems. , 2005, The Journal of chemical physics.

[47]  A. Gedanken,et al.  Microwave synthesis of core-shell gold/palladium bimetallic nanoparticles. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[48]  F. d’Acapito,et al.  Deviation from the virtual crystal approximation in disordered Au-Cu alloy nanocrystals: EXAFS and GIXRD investigation , 2003 .