Stress analysis of 3D complex geometries using the scaled boundary polyhedral finite elements

While dominating the numerical stress analysis of solids, the finite element method requires a mesh to conform to the surface of the geometry. Thus the mesh generation of three dimensional complex structures often require tedious human interventions. In this paper, we present a formulation for arbitrary polyhedral elements based on the scaled boundary finite element method, which reduces the difficulties in automatic mesh generation. We also propose a simple method to generate polyhedral meshes with local refinements. The mesh generation method is based on combining an octree mesh with surfaces defined using signed distance functions. Through several numerical examples, we verify the results, study the convergence behaviour and depict the many advantages and capabilities of the presented method. This contribution is intended to assist us to eventually frame a set of numerical methods and associated tools for the full automation of the engineering analysis where minimal human interaction is needed.

[1]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[2]  Thomas S. Huang,et al.  A survey of construction and manipulation of octrees , 1988, Comput. Vis. Graph. Image Process..

[3]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[4]  Wayne Oaks,et al.  Polyhedral Mesh Generation , 2000, IMR.

[5]  John P. Wolf,et al.  The scaled boundary finite-element method: analytical solution in frequency domain , 1998 .

[6]  Andrew Deeks,et al.  Determination of coefficients of crack tip asymptotic fields using the scaled boundary finite element method , 2005 .

[7]  N. Sukumar,et al.  Archives of Computational Methods in Engineering Recent Advances in the Construction of Polygonal Finite Element Interpolants , 2022 .

[8]  T. Belytschko,et al.  MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .

[9]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[10]  Glaucio H. Paulino,et al.  Polygonal finite elements for incompressible fluid flow , 2014 .

[11]  E. Ramm,et al.  Interface material failure modeled by the extended finite-element method and level sets , 2006 .

[12]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[13]  Nader Hataf,et al.  3D coupled scaled boundary finite-element/finite-element analysis of ground vibrations induced by underground train movement , 2014 .

[14]  S. Natarajan,et al.  Dynamic fracture simulations using the scaled boundary finite element method on hybrid polygon–quadtree meshes , 2016 .

[15]  Nicolas Moës,et al.  Studied X-FEM enrichment to handle material interfaces with higher order finite element , 2010 .

[16]  Ted Belytschko,et al.  A new fast finite element method for dislocations based on interior discontinuities , 2007 .

[17]  John P. Wolf,et al.  Semi-analytical representation of stress singularities as occurring in cracks in anisotropic multi-materials with the scaled boundary finite-element method , 2002 .

[18]  J. Wolf,et al.  The scaled boundary finite-element method – a primer: derivations , 2000 .

[19]  Grégory Legrain,et al.  An X‐FEM and level set computational approach for image‐based modelling: Application to homogenization , 2011 .

[20]  Alireza Tabarraei,et al.  APPLICATION OF POLYGONAL FINITE ELEMENTS IN LINEAR ELASTICITY , 2006 .

[21]  Clark R. Dohrmann,et al.  A uniform nodal strain tetrahedron with isochoric stabilization , 2009 .

[22]  Timon Rabczuk,et al.  A computational library for multiscale modeling of material failure , 2013, Computational Mechanics.

[23]  P. Bouchard,et al.  Numerical modelling of crack propagation: automatic remeshing and comparison of different criteria , 2003 .

[24]  J. Wolf,et al.  The scaled boundary finite element method , 2004 .

[25]  A. Deeks,et al.  A meshless local Petrov-Galerkin scaled boundary method , 2005 .

[26]  Lourenço Beirão da Veiga,et al.  Virtual Elements for Linear Elasticity Problems , 2013, SIAM J. Numer. Anal..

[27]  Amir R. Khoei,et al.  A polygonal finite element method for modeling arbitrary interfaces in large deformation problems , 2012 .

[28]  Joseph E. Bishop,et al.  Simulating the pervasive fracture of materials and structures using randomly close packed Voronoi tessellations , 2009 .

[29]  Nancy Hitschfeld-Kahler,et al.  Generation of Polyhedral Delaunay Meshes , 2014 .

[30]  Ted Belytschko,et al.  Structured extended finite element methods for solids defined by implicit surfaces , 2002 .

[31]  Grégory Legrain,et al.  On the use of the extended finite element method with quadtree/octree meshes , 2011 .

[32]  F. Tin-Loi,et al.  Polygon scaled boundary finite elements for crack propagation modelling , 2012 .

[33]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[34]  Chongmin Song,et al.  Time‐harmonic response of non‐homogeneous elastic unbounded domains using the scaled boundary finite‐element method , 2006 .

[35]  J. Z. Zhu,et al.  The finite element method , 1977 .

[36]  Francis Tin-Loi,et al.  Scaled boundary polygons with application to fracture analysis of functionally graded materials , 2014 .

[37]  Anath Fischer,et al.  Integrated mechanically based CAE system using B-Spline finite elements , 2000, Comput. Aided Des..

[38]  J. Wolf,et al.  A virtual work derivation of the scaled boundary finite-element method for elastostatics , 2002 .

[39]  Thomas J. R. Hughes,et al.  Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .

[40]  E. Wachspress,et al.  A Rational Finite Element Basis , 1975 .

[41]  Markus H. Gross,et al.  Polyhedral Finite Elements Using Harmonic Basis Functions , 2008, Comput. Graph. Forum.

[42]  Ernst Rank,et al.  Finite cell method , 2007 .

[43]  L. Beirao da Veiga,et al.  A Virtual Element Method for elastic and inelastic problems on polytope meshes , 2015, 1503.02042.

[44]  M. M. Rashid,et al.  A three‐dimensional finite element method with arbitrary polyhedral elements , 2006 .

[45]  Mark S. Shephard,et al.  Automatic three‐dimensional mesh generation by the finite octree technique , 1984 .

[46]  Pierre-Olivier Bouchard,et al.  Crack propagation modelling using an advanced remeshing technique , 2000 .

[47]  Andrew Deeks,et al.  Fully-automatic modelling of cohesive crack growth using a finite element-scaled boundary finite element coupled method , 2007 .

[48]  Jean-François Remacle,et al.  A computational approach to handle complex microstructure geometries , 2003 .

[49]  Chongmin Song,et al.  The scaled boundary finite-element method—alias consistent infinitesimal finite-element cell method—for elastodynamics , 1997 .

[50]  Saeed Ziaei-Rad,et al.  Stochastic modelling of clay/epoxy nanocomposites , 2014 .

[51]  Peter Wriggers,et al.  Contact treatment in isogeometric analysis with NURBS , 2011 .

[52]  David R. O'Hallaron,et al.  Scalable Parallel Octree Meshing for TeraScale Applications , 2005, ACM/IEEE SC 2005 Conference (SC'05).

[53]  Timon Rabczuk,et al.  A Simple Circular Cell Method for Multilevel Finite Element Analysis , 2012, J. Appl. Math..

[54]  Chongmin Song,et al.  Transient analysis of wave propagation in non‐homogeneous elastic unbounded domains by using the scaled boundary finite‐element method , 2006 .

[55]  A. Bower Applied Mechanics of Solids , 2009 .

[56]  Carolin Birk,et al.  Computation of three-dimensional fracture parameters at interface cracks and notches by the scaled boundary finite element method , 2015 .

[57]  Richard Szeliski,et al.  Rapid octree construction from image sequences , 1993 .

[58]  T. Belytschko,et al.  An Extended Finite Element Method for Two-Phase Fluids , 2003 .

[59]  N. Sukumar Construction of polygonal interpolants: a maximum entropy approach , 2004 .

[60]  T. Belytschko,et al.  An enriched finite element method and level sets for axisymmetric two‐phase flow with surface tension , 2003 .

[61]  Dominik Schillinger,et al.  The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models , 2015 .

[62]  Clark R. Dohrmann,et al.  Uniform Strain Elements for Three-Node Triangular and Four-Node Tetrahedral Meshes , 1999 .

[63]  Derek M. Causon,et al.  Developments in Cartesian cut cell methods , 2003, Math. Comput. Simul..

[64]  G. Paulino,et al.  PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab , 2012 .

[65]  N. Sukumar,et al.  Generalized Gaussian quadrature rules on arbitrary polygons , 2010 .

[66]  N. Sukumar,et al.  Conforming polygonal finite elements , 2004 .

[67]  T. Hughes,et al.  Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations , 2010 .

[68]  S. Natarajan,et al.  Isogeometric analysis enhanced by the scaled boundary finite element method , 2015 .

[69]  Glaucio H. Paulino,et al.  On the Virtual Element Method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes , 2014 .