Increasing the Entropy of a Random Number Generator Using n-scroll Chaotic attractors

The purpose of this paper is to investigate the effect of the number of scrolls on the measure-theoretic entropy of a random bit generator (RBG) based on multiscroll chaotic attractor. The binary output of the proposed RBG is obtained by sampling the output of the generalized nonlinearity of multiscroll chaotic attractor circuit which is in fact a noninvertible function. Our numeric simulations show that the entropy of the proposed random bit generator is increased by increasing the number of scrolls.

[1]  Guanrong Chen,et al.  Generating Multiscroll Chaotic Attractors: Theories, Methods and Applications , 2006 .

[2]  Xinghuo Yu,et al.  Generating 3-D multi-scroll chaotic attractors: A hysteresis series switching method , 2004, Autom..

[3]  Andrew M. Fraser,et al.  Information and entropy in strange attractors , 1989, IEEE Trans. Inf. Theory.

[4]  P. Arena,et al.  Generation of n-double scrolls via cellular neural networks , 1996, Int. J. Circuit Theory Appl..

[5]  Leon O. Chua,et al.  Chua's circuit 10 years later , 1994, Int. J. Circuit Theory Appl..

[6]  L. E. Guerrero,et al.  A mechanism for randomness , 2002, nlin/0202022.

[7]  Johan A. K. Suykens,et al.  Families of scroll Grid attractors , 2002, Int. J. Bifurc. Chaos.

[8]  Johan A. K. Suykens,et al.  The K.U.Leuven Time Series Prediction Competition , 1998 .

[9]  Michael Peter Kennedy,et al.  Construction of classes of circuit-independent chaotic oscillators using passive-only nonlinear devices , 2001 .

[10]  J. Suykens,et al.  Generation of n-double scrolls (n=1, 2, 3, 4,...) , 1993 .

[11]  Johan A. K. Suykens,et al.  n-scroll chaos generators: a simple circuit model , 2001 .

[12]  J. Suykens,et al.  Experimental confirmation of 3- and 5-scroll attractors from a generalized Chua's circuit , 2000 .

[13]  Leon O. Chua,et al.  A family of n-scroll attractors from a generalized Chua's circuit , 1997 .

[14]  Ahmed S. Elwakil,et al.  Cross-coupled chaotic oscillators and application to random bit generation , 2006 .

[15]  Xinghuo Yu,et al.  Design and analysis of multiscroll chaotic attractors from saturated function series , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[16]  L. Tsimring,et al.  The analysis of observed chaotic data in physical systems , 1993 .

[17]  Henry Leung,et al.  Experimental verification of multidirectional multiscroll chaotic attractors , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[18]  Johan A. K. Suykens,et al.  True random bit generation from a double-scroll attractor , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.