Porous Electrode Materials for Lithium‐Ion Batteries – How to Prepare Them and What Makes Them Special

Numerous benefits of porous electrode materials for lithium ion batteries (LIBs) have been demonstrated, including examples of higher rate capabilities, better cycle lives, and sometimes greater gravimetric capacities at a given rate compared to nonporous bulk materials. These properties promise advantages of porous electrode materials for LIBs in electric and hybrid electric vehicles, portable electronic devices, and stationary electrical energy storage. This review highlights methods of synthesizing porous electrode materials by templating and template-free methods and discusses how the structural features of porous electrodes influence their electrochemical properties. A section on electrochemical properties of porous electrodes provides examples that illustrate the influence of pore and wall architecture and interconnectivity, surface area, particle morphology, and nanocomposite formation on the utilization of the electrode materials, specific capacities, rate capabilities, and structural stability during lithiation and delithiation processes. Recent applications of porous solids as components for three-dimensionally interpenetrating battery architectures are also described.

[1]  Jaephil Cho,et al.  Superior lithium electroactive mesoporous Si@carbon core-shell nanowires for lithium battery anode material. , 2008, Nano letters.

[2]  Ji-Won Choi,et al.  Issue and challenges facing rechargeable thin film lithium batteries , 2008 .

[3]  Luke J. Venstrom,et al.  Control of Heterogeneity in Nanostructured Ce1–xZrxO2 Binary Oxides for Enhanced Thermal Stability and Water Splitting Activity , 2011 .

[4]  K. Kanamura,et al.  Preparation and characterization of three dimensionally ordered macroporous Li4Ti5O12 anode for lithium batteries , 2007 .

[5]  Torsten Brezesinski,et al.  Ordered Large-Pore Mesoporous Li4Ti5O12 Spinel Thin Film Electrodes with Nanocrystalline Framework for High Rate Rechargeable Lithium Batteries: Relationships among Charge Storage, Electrical Conductivity, and Nanoscale Structure , 2011 .

[6]  D. Aurbach,et al.  The use of tin-decorated mesoporous carbon as an anode material for rechargeable lithium batteries. , 2005, Chemical communications.

[7]  Qiang Zhang,et al.  Direct growth of flexible LiMn2O4/CNT lithium-ion cathodes. , 2011, Chemical communications.

[8]  Meilin Liu,et al.  Mesoporous Sn–TiO2 composite electrodes for lithium batteries , 2000 .

[9]  H. Munakata,et al.  Highly patterned cylindrical Ni–Sn alloys with 3-dimensionally ordered macroporous structure as anodes for lithium batteries , 2010 .

[10]  M. Antonietti,et al.  Facile One-Pot Synthesis of Mesoporous SnO2 Microspheres via Nanoparticles Assembly and Lithium Storage Properties , 2008 .

[11]  James G. Mitchell,et al.  Controlled pore structure modification of diatoms by atomic layer deposition of TiO2 , 2006 .

[12]  Y. Hikichi,et al.  Porous Titania Ceramic Prepared by Mimicking Silicified Wood , 2000 .

[13]  Zhi Yang,et al.  Novel Three‐Dimensional Mesoporous Silicon for High Power Lithium‐Ion Battery Anode Material , 2011 .

[14]  Z. Su,et al.  Syntheses, Li Insertion, and Photoactivity of Mesoporous Crystalline TiO2 , 2009 .

[15]  Nicholas R. Denny,et al.  Morphological Control in Colloidal Crystal Templating of Inverse Opals, Hierarchical Structures, and Shaped Particles† , 2008 .

[16]  Charles R. Martin,et al.  Nanomaterials: A Membrane-Based Synthetic Approach , 1994, Science.

[17]  Seokgwang Doo,et al.  Nano-propping effect of residual silicas on reversible lithium storage over highly ordered mesoporous SnO2 materials , 2009 .

[18]  B. Dunn,et al.  Electrochemical properties of vanadium oxide aerogels , 2003 .

[19]  Jaephil Cho,et al.  Porous Si anode materials for lithium rechargeable batteries , 2010 .

[20]  Yet-Ming Chiang,et al.  Spatially Resolved Modeling of Microstructurally Complex Battery Architectures , 2007 .

[21]  Fan Zhang,et al.  Colloidal-Crystal-Templated Synthesis of Ordered Macroporous Electrode Materials for Lithium Secondary Batteries , 2003 .

[22]  Jing Liang,et al.  Template-Directed Materials for Rechargeable Lithium-Ion Batteries† , 2008 .

[23]  Bruce Dunn,et al.  Continuous formation of supported cubic and hexagonal mesoporous films by sol–gel dip-coating , 1997, Nature.

[24]  M. Jaroniec,et al.  Ordered mesoporous carbons , 2001 .

[25]  Yuqiu Wang,et al.  Morphology Control of β-In2S3 from Chrysanthemum-Like Microspheres to Hollow Microspheres: Synthesis and Electrochemical Properties , 2009 .

[26]  Charles R. Martin,et al.  Rate Capabilities of Nanostructured LiMn2 O 4 Electrodes in Aqueous Electrolyte , 2000 .

[27]  J. Souquet,et al.  Thin film lithium batteries , 2002 .

[28]  Chunlei Wang,et al.  Mesoporous Silicon Anodes Prepared by Magnesiothermic Reduction for Lithium Ion Batteries , 2011 .

[29]  Justin C. Lytle,et al.  Synthesis and Rate Performance of Monolithic Macroporous Carbon Electrodes for Lithium‐Ion Secondary Batteries , 2005 .

[30]  J. Xue,et al.  Synthesis of monodispersed SnO2@C composite hollow spheres for lithium ion battery anode applications , 2011 .

[31]  J. Tarascon,et al.  Room-temperature synthesis leading to nanocrystalline Ag(2)V(4)O(11). , 2010, Journal of the American Chemical Society.

[32]  Jaephil Cho,et al.  A mesoporous/crystalline composite material containing tin phosphate for use as the anode in lithium-ion batteries. , 2004, Angewandte Chemie.

[33]  M. Wohlfahrt‐Mehrens,et al.  Mesoporous anatase TiO2 composite electrodes: Electrochemical characterization and high rate performances , 2009 .

[34]  D. Zhao,et al.  Designed synthesis of mesoporous solids via nonionic-surfactant-templating approach. , 2007, Chemical communications.

[35]  Mingmei Wu,et al.  Topotactic Conversion Route to Mesoporous Quasi‐Single‐Crystalline Co3O4 Nanobelts with Optimizable Electrochemical Performance , 2010 .

[36]  L. Kavan,et al.  Lithium Insertion into Anatase Inverse Opal , 2004 .

[37]  A. Stein,et al.  General synthesis of periodic macroporous solids by templated salt precipitation and chemical conversion , 2000 .

[38]  Bruce Dunn,et al.  Vanadium Oxide-Carbon Nanotube Composite Electrodes for Use in Secondary Lithium Batteries , 2002 .

[39]  L. Nazar,et al.  Study of the formation of mesoporous titania via a template approach and of subsequent Li insertion , 2002 .

[40]  Meilin Liu,et al.  Preparation of mesoporous tin oxide for electrochemical applications , 1999, Chemical Communications.

[41]  M. Nagamori,et al.  Thermodynamics of the Si-C-O system for the production of silicon carbide and metallic silicon , 1986 .

[42]  Ki Tae Nam,et al.  Stamped microbattery electrodes based on self-assembled M13 viruses , 2008, Proceedings of the National Academy of Sciences.

[43]  S. Dou,et al.  Nano-structured spherical porous SnO2 anodes for lithium-ion batteries , 2006 .

[44]  S. Das,et al.  High lithium storage in micrometre sized mesoporous spherical self-assembly of anatase titania nanospheres and carbon , 2010 .

[45]  Jaephil Cho,et al.  Template Synthesis of Hollow Sb Nanoparticles as a High-Performance Lithium Battery Anode Material , 2008 .

[46]  J. Pan,et al.  Block copolymer-templated synthesis of highly organized mesoporous TiO2-based films and their photoelectrochemical applications , 2011 .

[47]  Haoshen Zhou,et al.  Nanocrystalline Rutile TiO2 Electrode for High-Capacity and High-Rate Lithium Storage , 2007 .

[48]  Q. Li,et al.  Facile solvothermal synthesis of mesoporous Cu₂SnS₃ spheres and their application in lithium-ion batteries. , 2011, Nanoscale.

[49]  Dongyuan Zhao,et al.  Synthesis of replica mesostructures by the nanocasting strategy , 2005 .

[50]  Naixin Xu,et al.  A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries , 2002 .

[51]  P. Bruce,et al.  Macroporous Li(Ni1/3Co1/3Mn1/3)O2: A High‐Power and High‐Energy Cathode for Rechargeable Lithium Batteries , 2006 .

[52]  H. Oliveira,et al.  Effect of mesoporosity of vanadium oxide prepared by sol–gel process as cathodic material evaluated by cyclability during Li+ insertion/deinsertion , 2010 .

[53]  A. Yu,et al.  Mesoporous tin oxides as lithium intercalation anode materials , 2002 .

[54]  Yueming Li,et al.  Carbon-Coated Macroporous Sn2P2O7 as Anode Materials for Li-Ion Battery , 2008 .

[55]  M. Nathan,et al.  Advanced materials for the 3D microbattery , 2006 .

[56]  Bradley F. Chmelka,et al.  Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures , 1998 .

[57]  Seung‐Wan Song,et al.  One-step hydrothermal synthesis of mesoporous anatase TiO₂ microsphere and interfacial control for enhanced lithium storage performance. , 2011, ACS applied materials & interfaces.

[58]  P. Bruce,et al.  Lithium intercalation into mesoporous anatase with an ordered 3D pore structure. , 2010, Angewandte Chemie.

[59]  Clayton Jeffryes,et al.  The potential of diatom nanobiotechnology for applications in solar cells, batteries, and electroluminescent devices , 2011 .

[60]  Zhen Zhou,et al.  Synthesis and Electrochemical Performance of Sulfur/Highly Porous Carbon Composites , 2009 .

[61]  Fred Roozeboom,et al.  3‐D Integrated All‐Solid‐State Rechargeable Batteries , 2007 .

[62]  Shuru Chen,et al.  A composite material of SnO2/ordered mesoporous carbon for the application in Lithium-ion Battery , 2011 .

[63]  A. Stein,et al.  Multiconstituent Synthesis of LiFePO4/C Composites with Hierarchical Porosity as Cathode Materials for Lithium Ion Batteries , 2011 .

[64]  Yong Yang,et al.  Synthesis, characterization and electrochemical performance of mesoporous FePO4 as cathode material for rechargeable lithium batteries , 2008 .

[65]  Justin C. Lytle,et al.  Effect of a Macropore Structure on Cycling Rates of LiCoO2 , 2005 .

[66]  Robert A. Huggins,et al.  Lithium alloy negative electrodes , 1999 .

[67]  Yan Yu,et al.  Encapsulation of Sn@carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries. , 2009, Angewandte Chemie.

[68]  Yong‐Sheng Hu,et al.  Lithium storage performance in ordered mesoporous MoS2 electrode material , 2012 .

[69]  Di Zhang,et al.  Synthesis of SnO2 nanoparticles inside mesoporous carbon via a sonochemical method for highly reversible lithium batteries , 2011 .

[70]  L. Qi,et al.  Synthesis and Characterization of Mesostructured Tin Oxide with Crystalline Walls , 1998 .

[71]  B. Smarsly,et al.  Niobium Doped TiO2 with Mesoporosity and Its Application for Lithium Insertion , 2010 .

[72]  J. Sanz,et al.  Three-Dimensionally Ordered Macroporous Lithium Manganese Oxide for Rechargeable Lithium Batteries , 2008 .

[73]  Yuriy V. Mikhaylik,et al.  Li/S fundamental chemistry and application to high-performance rechargeable batteries , 2004 .

[74]  C. Liang,et al.  Hierarchically Structured Sulfur/Carbon Nanocomposite Material for High-Energy Lithium Battery , 2009 .

[75]  Jaephil Cho,et al.  Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. , 2008, Angewandte Chemie.

[76]  A. Stein,et al.  Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids , 1998, Science.

[77]  Andreas Stein,et al.  Effects of Hierarchical Architecture on Electronic and Mechanical Properties of Nanocast Monolithic Porous Carbons and Carbon−Carbon Nanocomposites , 2006 .

[78]  Haoshen Zhou,et al.  Preparation and rate capability of Li4Ti5O12 hollow-sphere anode material , 2007 .

[79]  John Wang,et al.  Ordered mesoporous α-Fe2O3 (hematite) thin-film electrodes for application in high rate rechargeable lithium batteries. , 2011, Small.

[80]  A. Stein,et al.  Synthesis of monolithic 3D ordered macroporous carbon/nano-silicon composites by diiodosilane decomposition , 2008 .

[81]  Y. Abu-Lebdeh,et al.  Synthesis and characterization of macroporous tin oxide composite as an anode material for Li-ion batteries , 2011 .

[82]  Ran Liu,et al.  Heterogeneous nanostructured electrode materials for electrochemical energy storage. , 2011, Chemical communications.

[83]  J. Lee,et al.  Crystalline carbon hollow spheres, crystalline carbon-SnO2 hollow spheres, and crystalline SnO2 hollow spheres: Synthesis and performance in reversible Li-ion storage , 2006 .

[84]  F. Kleitz,et al.  Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. , 2003, Chemical communications.

[85]  G. Fey,et al.  Relationship of cathode pore-size distribution and rated capacity in Li/MnO2 cells , 1993 .

[86]  Carl A. Batt,et al.  Biotemplated Nanostructured Materials , 2008 .

[87]  E. Roberts,et al.  A novel porous carbon based on diatomaceous earth. , 2006, Chemical communications.

[88]  Haoshen Zhou,et al.  A self-ordered, crystalline-glass, mesoporous nanocomposite for use as a lithium-based storage device with both high power and high energy densities. , 2005, Angewandte Chemie.

[89]  Jun Liu,et al.  Synthesis and Li-Ion Insertion Properties of Highly Crystalline Mesoporous Rutile TiO2 , 2008 .

[90]  Yong Yang,et al.  Mesoporous FePO4 with enhanced electrochemical performance as cathode materials of rechargeable lithium batteries , 2005 .

[91]  Yong‐Sheng Hu,et al.  Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. , 2009, Nano letters.

[92]  Chunlei Wang,et al.  Fabrication and properties of a carbon/polypyrrole three-dimensional microbattery , 2008 .

[93]  A. J. Bhattacharyya,et al.  Improved lithium cyclability and storage in a multi-sized pore ("differential spacers") mesoporous SnO2. , 2011, Nanoscale.

[94]  M. Antonietti,et al.  Porous materials via nanocasting procedures: innovative materials and learning about soft-matter organization. , 2002, Chemical communications.

[95]  Justin C. Lytle,et al.  Multifunctional 3D nanoarchitectures for energy storage and conversion. , 2009, Chemical Society reviews.

[96]  Justin C. Lytle,et al.  Photonic Crystal Structures as a Basis for a Three‐Dimensionally Interpenetrating Electrochemical‐Cell System , 2006 .

[97]  N. Nakashima,et al.  A Mesoporous Nanocomposite of TiO2 and Carbon Nanotubes as a High‐Rate Li‐Intercalation Electrode Material , 2006 .

[98]  M. P. Paranthaman,et al.  Mesoporous TiO2–B Microspheres with Superior Rate Performance for Lithium Ion Batteries , 2011, Advanced materials.

[99]  Lynden A. Archer,et al.  Designed Synthesis of Coaxial SnO2@carbon Hollow Nanospheres for Highly Reversible Lithium Storage , 2009 .

[100]  F. Zheng,et al.  Synthesis of porous SnO2 nanospheres and their application for lithium-ion battery , 2012 .

[101]  Yan Yu,et al.  Tin nanoparticles encapsulated in porous multichannel carbon microtubes: preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries. , 2009, Journal of the American Chemical Society.

[102]  J. Tarascon,et al.  Mesoporous Cr2O3 as negative electrode in lithium batteries: TEM study of the texture effect on the polymeric layer formation , 2008 .

[103]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[104]  Jaephil Cho,et al.  Synthesis and electrochemical properties of lithium-electroactive surface-stabilized silicon quantum dots , 2007 .

[105]  K. Nicolaou,et al.  Enantioselective intramolecular Friedel-Crafts-type alpha-arylation of aldehydes. , 2009, Journal of the American Chemical Society.

[106]  Peter Greil,et al.  Biomorphic Cellular Ceramics , 2000 .

[107]  Jinwoo Lee,et al.  Highly Improved Rate Capability for a Lithium‐Ion Battery Nano‐Li4Ti5O12 Negative Electrode via Carbon‐Coated Mesoporous Uniform Pores with a Simple Self‐Assembly Method , 2011 .

[108]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[109]  Jeffrey W. Long,et al.  Charge insertion into hybrid nanoarchitectures: mesoporous manganese oxide coated with ultrathin poly(phenylene oxide) , 2004 .

[110]  Lin Gu,et al.  Reversible Storage of Lithium in Silver‐Coated Three‐Dimensional Macroporous Silicon , 2010, Advanced materials.

[111]  Jun Jin,et al.  Highly dispersed sulfur in ordered mesoporous carbon sphere as a composite cathode for rechargeable , 2011 .

[112]  Chong Seung Yoon,et al.  Synthesis of Nanowire and Hollow LiFePO4 Cathodes for High-Performance Lithium Batteries , 2008 .

[113]  Geoffrey A. Ozin,et al.  Silicon Inverse‐Opal‐Based Macroporous Materials as Negative Electrodes for Lithium Ion Batteries , 2009 .

[114]  Tae-Wan Kim,et al.  MCM-48-like large mesoporous silicas with tailored pore structure: facile synthesis domain in a ternary triblock copolymer-butanol-water system. , 2005, Journal of the American Chemical Society.

[115]  Chang-Jin Kim,et al.  Fabrication of High-Aspect-Ratio Electrode Arrays for Three-Dimensional Microbatteries , 2007, Journal of Microelectromechanical Systems.

[116]  L. Archer,et al.  Shell-by-shell synthesis of tin oxide hollow colloids with nanoarchitectured walls: cavity size tuning and functionalization. , 2007, Small.

[117]  Shengbo Zhang,et al.  Oxygen reduction reaction catalyst on lithium/air battery discharge performance , 2011 .

[118]  M. Wohlfahrt‐Mehrens,et al.  Mesoporous Anatase TiO2 Electrodes Modified by Metal Deposition: Electrochemical Characterization and High Rate Performances , 2010 .

[119]  Mietek Jaroniec,et al.  Synthesis of New, Nanoporous Carbon with Hexagonally Ordered Mesostructure , 2000 .

[120]  K. Amine,et al.  Polyvinylpyrrolidone-assisted synthesis of microscale C-LiFePO4 with high tap density as positive electrode materials for lithium batteries , 2010 .

[121]  Ji‐Guang Zhang,et al.  A three-dimensional Macroporous Cu/SnO2 composite anode sheet prepared via a novel method , 2010 .

[122]  V. Manivannan,et al.  Tuning the Position of the Redox Couples in Materials with NASICON Structure by Anionic Substitution , 1998 .

[123]  Jiayan Luo,et al.  Highly Electrochemical Reaction of Lithium in the Ordered Mesoporosus β-MnO2 , 2006 .

[124]  A. Stein,et al.  Silica-free syntheses of hierarchically ordered macroporous polymer and carbon monoliths with controllable mesoporosity , 2008 .

[125]  P. Balaya,et al.  Mesoporous TiO2 with high packing density for superior lithium storage , 2010 .

[126]  Y. Chiang,et al.  Self‐Assembling Colloidal‐Scale Devices: Selecting and Using Short‐Range Surface Forces Between Conductive Solids , 2007 .

[127]  K. Kanamura,et al.  Design of a micro-pattern structure for a three dimensionally macroporous Sn-Ni alloy anode with high areal capacity. , 2011, Chemical communications.

[128]  Yongyao Xia,et al.  Highly ordered three-dimensional macroporous FePO4 as cathode materials for lithium–ion batteries , 2008 .

[129]  S. El‐Safty Instant synthesis of mesoporous monolithic materials with controllable geometry, dimension and stability: a review , 2011 .

[130]  K. Severin,et al.  Supramolecular assembly of mesostructured tin oxide , 1998 .

[131]  F. Kwong,et al.  Fabrication of Porous Biomorphic C–TiC and TiO2 from Sea Wool Sponges , 2007 .

[132]  Yongcai Qiu,et al.  Ultrafine tin nanocrystallites encapsulated in mesoporous carbon nanowires: scalable synthesis and excellent electrochemical properties for rechargeable lithium ion batteries. , 2010, Chemical communications.

[133]  Bruce Dunn,et al.  Hierarchical battery electrodes based on inverted opal structures , 2002 .

[134]  K. Sandhage,et al.  Thin, conformal, and continuous SnO2 coatings on three-dimensional biosilica templates through hydroxy-group amplification and layer-by-layer alkoxide deposition. , 2007, Angewandte Chemie.

[135]  H. Kim,et al.  Facile synthesis route to highly crystalline mesoporous γ-MnO2 nanospheres , 2012 .

[136]  M. Nathan,et al.  Three-dimensional thin-film Li-ion microbatteries for autonomous MEMS , 2005, Journal of Microelectromechanical Systems.

[137]  Ying Wang,et al.  Electrochemical Characterization of a Three Dimensionally Ordered Macroporous Anatase TiO2 Electrode , 2006 .

[138]  Jaephil Cho,et al.  Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials , 2008 .

[139]  Bruno Scrosati,et al.  A High-Rate, Nanocomposite LiFePO4 ∕ Carbon Cathode , 2005 .

[140]  Guoxiu Wang,et al.  Highly ordered mesoporous Cr2O3 materials with enhanced performance for gas sensors and lithium ion batteries. , 2012, Chemical communications.

[141]  D. Zhao,et al.  Carbon Materials for Chemical Capacitive Energy Storage , 2011, Advanced materials.

[142]  H. Munakata,et al.  All-solid-state lithium battery with a three-dimensionally ordered Li1.5Al0.5Ti1.5(PO4)3 electrode , 2010 .

[143]  A. Marschilok,et al.  Electrochemical reduction of silver vanadium phosphorous oxide, Ag(2)VO(2)PO(4): the formation of electrically conductive metallic silver nanoparticles. , 2009, Chemistry of materials : a publication of the American Chemical Society.

[144]  H. Qiao,et al.  Sonochemical synthesis of ordered SnO₂/CMK-3 nanocomposites and their lithium storage properties. , 2011, ACS applied materials & interfaces.

[145]  Seung M. Oh,et al.  Direct Access to Mesoporous Crystalline TiO2/Carbon Composites with Large and Uniform Pores for Use as Anode Materials in Lithium Ion Batteries , 2011 .

[146]  Justin C. Lytle,et al.  Structural and electrochemical properties of three-dimensionally ordered macroporous tin(IV) oxide films , 2004 .

[147]  Shuru Chen,et al.  Ordered mesoporous carbon/sulfur nanocomposite of high performances as cathode for lithium–sulfur battery , 2011 .

[148]  A. Marschilok,et al.  Electrochemical Reduction of Silver Vanadium Phosphorous Oxide, Ag(2)VO(2)PO(4): Silver Metal Deposition and Associated Increase in Electrical Conductivity. , 2010, Journal of power sources.

[149]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[150]  Michele L. Anderson,et al.  Electronic connection to the interior of a mesoporous insulator with nanowires of crystalline RuO2 , 2000, Nature.

[151]  Yong Wang,et al.  Highly Reversible Lithium Storage in Porous SnO2 Nanotubes with Coaxially Grown Carbon Nanotube Overlayers , 2006 .

[152]  Martin Winter,et al.  Electrochemical lithiation of tin and tin-based intermetallics and composites , 1999 .

[153]  Di Zhang,et al.  Synthesis of Biomorphous Nickel Oxide from a Pinewood Template and Investigation on a Hierarchical Porous Structure , 2006 .

[154]  Matthew B. Dickerson,et al.  Novel, Bioclastic Route to Self‐Assembled, 3D, Chemically Tailored Meso/Nanostructures: Shape‐Preserving Reactive Conversion of Biosilica (Diatom) Microshells , 2002 .

[155]  T. Kudo,et al.  Li-intercalation property of mesoporous anatase-TiO2 synthesized by bicontinuous microemulsion-aided process , 2005 .

[156]  C. E. Tracy,et al.  Electrochromic and chemochromic performance of mesoporous thin-film vanadium oxide , 2003 .

[157]  Bruce Dunn,et al.  Three-dimensional electrodes and battery architectures , 2011 .

[158]  Di Zhang,et al.  Biotemplated materials for sustainable energy and environment: current status and challenges. , 2011, ChemSusChem.

[159]  A. Prowald,et al.  Electrochemical synthesis of macroporous aluminium films and their behavior towards lithium depositi , 2011 .

[160]  M. Armand,et al.  Fluorosulfate Positive Electrode Materials Made with Polymers as Reacting Media , 2010 .

[161]  J. Dahn,et al.  Effect of the Sintering Agent, B 2 O 3 , on Li [ Ni x Co1 − 2x Mn x ] O 2 Materials Density, Structure, and Electrochemical Properties , 2004 .

[162]  Linda F. Nazar,et al.  Positive Electrode Materials for Li-Ion and Li-Batteries† , 2010 .

[163]  L. Nazar,et al.  High “C” rate Li-S cathodes: sulfur imbibed bimodal porous carbons , 2011 .

[164]  Fredrickson,et al.  Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores , 1998, Science.

[165]  Menachem Nathan,et al.  Progress in three-dimensional (3D) Li-ion microbatteries , 2006 .

[166]  Ling Huang,et al.  Fabrication and properties of macroporous tin-cobalt alloy film electrodes for lithium-ion batteries , 2007 .

[167]  Paul V. Braun,et al.  Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. , 2011, Nature nanotechnology.

[168]  T. Osaka,et al.  Cycle and rate properties of mesoporous tin anode for lithium ion secondary batteries , 2008 .

[169]  3D DEPOSITION OF LIMN2O4: ENHANCEMENT OF LITHIUM BATTERY PERFORMANCE , 2003 .

[170]  P. Bruce,et al.  Synthesis of ordered mesoporous Li-Mn-O spinel as a positive electrode for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[171]  Guoxing Xiong,et al.  Layer-by-layer assembly of TiO(2) colloids onto diatomite to build hierarchical porous materials. , 2008, Journal of colloid and interface science.

[172]  Jiaqiang Wang,et al.  Synthesis, characterizations and photocatalytic studies of mesoporous titania prepared by using four plant skins as templates , 2010 .

[173]  P. Kofinas,et al.  Self-assembly of virus-structured high surface area nanomaterials and their application as battery electrodes. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[174]  T. D. Hatchard,et al.  Reaction of Li with Alloy Thin Films Studied by In Situ AFM , 2003 .

[175]  Ling Huang,et al.  Electroplating synthesis and electrochemical properties of macroporous Sn-Cu alloy electrode for lithium-ion batteries , 2007 .

[176]  F. Renzo,et al.  Micelle‐Templated Materials , 2008 .

[177]  K. Edström,et al.  3D lithium ion batteries{from fundamentals to fabrication , 2011 .

[178]  Q. Li,et al.  Synthesis of mesoporous SnO2 spheres via self-assembly and superior lithium storage properties , 2011 .

[179]  Minwei Xu,et al.  Large-scale synthesis of macroporous SnO2 with/without carbon and their application as anode materials for lithium-ion batteries , 2011 .

[180]  L. Archer,et al.  Formation of SnO2 hollow nanospheres inside mesoporous silica nanoreactors. , 2011, Journal of the American Chemical Society.

[181]  Robert Dominko,et al.  Li2MSiO4 (M = Fe and/or Mn) cathode materials , 2008 .

[182]  A. Stein,et al.  Fabrication of a Fully Infiltrated Three-Dimensional Solid-State Interpenetrating Electrochemical Cell , 2007 .

[183]  Zongping Shao,et al.  Facile Synthesis of Nanocrystalline TiO2 Mesoporous Microspheres for Lithium-Ion Batteries , 2011 .

[184]  Justin C. Lytle,et al.  The importance of combining disorder with order for Li-ion insertion into cryogenically prepared nanoscopic ruthenia , 2007 .

[185]  Jeffrey W Long,et al.  Architectural design, interior decoration, and three-dimensional plumbing en route to multifunctional nanoarchitectures. , 2007, Accounts of chemical research.

[186]  Cara M. Doherty,et al.  High performance LiFePO4 electrode materials: influence of colloidal particle morphology and porosity on lithium-ion battery power capability , 2010 .

[187]  Yu-Guo Guo,et al.  Superior Electrode Performance of Nanostructured Mesoporous TiO2 (Anatase) through Efficient Hierarchical Mixed Conducting Networks , 2007 .

[188]  T. Kudo,et al.  Interconnected macroporous TiO2 (anatase) as a lithium insertion electrode material , 2004 .

[189]  Philipp Adelhelm,et al.  Hierarchically Porous Monolithic LiFePO4/Carbon Composite Electrode Materials for High Power Lithium Ion Batteries , 2009 .

[190]  Jeffrey W. Long,et al.  Ultrathin, protective coatings of poly(o-phenylenediamine) as electrochemical proton gates: Making mesoporous MnO2 nanoarchitectures stable in acid electrolytes , 2003 .

[191]  Yong Yang,et al.  Highly crystalline macroporous β-MnO2: Hydrothermal synthesis and application in lithium battery , 2010 .

[192]  Jun Chen,et al.  Sulfur–mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries , 2008 .

[193]  Galo J. A. A. Soler-Illia,et al.  Fundamentals of Mesostructuring Through Evaporation‐Induced Self‐Assembly , 2004 .

[194]  Songhun Yoon,et al.  Development of a high-performance anode for lithium ion batteries using novel ordered mesoporous tungsten oxide materials with high electrical conductivity. , 2011, Physical chemistry chemical physics : PCCP.

[195]  B. Hwang,et al.  Mesoporous carbon-encapsulated NiO nanocomposite negative electrode materials for high-rate Li-ion battery , 2010 .

[196]  Bruce Dunn,et al.  Three-dimensional battery architectures. , 2004, Chemical reviews.

[197]  Patricia H. Smith,et al.  Mesoporous SnO2 synthesized with non-ionic surfactants as an anode material for lithium batteries. , 2004, Journal of nanoscience and nanotechnology.

[198]  A. Stein,et al.  Porous Carbon/Tin (IV) Oxide Monoliths as Anodes for Lithium-Ion Batteries , 2008 .

[199]  J. Goodenough Challenges for Rechargeable Li Batteries , 2010 .

[200]  C. Rao,et al.  Mesoporous phases based on SnO2 and TiO2 , 1996 .

[201]  Ferdi Schüth,et al.  ENGINEERED POROUS CATALYTIC MATERIALS , 2005 .

[202]  B. Dunn,et al.  C-MEMS for the Manufacture of 3D Microbatteries , 2004 .

[203]  P. Bruce,et al.  Mesoporous and nanowire Co3O4 as negative electrodes for rechargeable lithium batteries. , 2007, Physical chemistry chemical physics : PCCP.

[204]  P. He,et al.  High-surface vanadium oxides with large capacities for lithium-ion batteries: from hydrated aerogel to nanocrystalline VO2(B), V6O13 and V2O5 , 2011 .

[205]  I. Honma,et al.  Self‐Assembly of the Mesoporous Electrode Material Li3Fe2(PO4)3 Using a Cationic Surfactant as the Template , 2004 .

[206]  K. Poeppelmeier,et al.  Three-Dimensionally Ordered Macroporous Li4Ti5O12: Effect of Wall Structure on Electrochemical Properties , 2006 .

[207]  Justin D. Holmes,et al.  Mesoporous Titania Nanotubes: Their Preparation and Application as Electrode Materials for Rechargeable Lithium Batteries , 2007 .

[208]  L. Kavan,et al.  Mesoporous thin film TiO2 electrodes , 2001 .

[209]  T. Nohira,et al.  Pinpoint and bulk electrochemical reduction of insulating silicon dioxide to silicon , 2003, Nature materials.

[210]  Feng Jiao,et al.  Mesoporous Crystalline β‐MnO2—a Reversible Positive Electrode for Rechargeable Lithium Batteries , 2007 .

[211]  B. Chichkov,et al.  Three-dimensional titania pore structures produced by using a femtosecond laser pulse technique and a dip coating procedure , 2009, Journal of Materials Science.

[212]  C. R. Martin,et al.  A High-Rate, High-Capacity, Nanostructured Sn-Based Anode Prepared Using Sol-Gel Template Synthesis , 2001 .

[213]  Di Zhang,et al.  Synthesis and hierarchical pore structure of biomorphic manganese oxide derived from woods , 2006 .

[214]  Lei Zhang,et al.  P123-PMMA dual-templating generation and unique physicochemical properties of three-dimensionally ordered macroporous iron oxides with nanovoids in the crystalline walls. , 2011, Inorganic chemistry.

[215]  Ye Cai,et al.  Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas , 2007, Nature.

[216]  B. C. Dening,et al.  Carbon aerogels with ultrathin, electroactive poly(o-methoxyaniline) coatings for high-performance electrochemical capacitors , 2004 .

[217]  Mao-Sung Wu,et al.  Monodispersed macroporous architecture of nickel-oxide film as an anode material for thin-film lithium-ion batteries , 2011 .

[218]  P. Bruce,et al.  Influence of size on the rate of mesoporous electrodes for lithium batteries. , 2010, Journal of the American Chemical Society.

[219]  A. Stein,et al.  Morphology Control of Carbon, Silica, and Carbon/Silica Nanocomposites : From 3D Ordered Macro-/Mesoporous Monoliths to Shaped Mesoporous Particles , 2008 .

[220]  Jun Liu,et al.  Optimization of mesoporous carbon structures for lithium–sulfur battery applications , 2011 .

[221]  H. Ahn,et al.  Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance , 2011 .

[222]  Cara M. Doherty,et al.  Colloidal Crystal Templating to Produce Hierarchically Porous LiFePO4 Electrode Materials for High Power Lithium Ion Batteries , 2009 .

[223]  Huijuan Zhang,et al.  Morphology-controlled synthesis of SnO(2) nanotubes by using 1D silica mesostructures as sacrificial templates and their applications in lithium-ion batteries. , 2010, Small.

[224]  Yuji Suzuki,et al.  Fabrication of Three-Dimensional Battery Using Ceramic Electrolyte with Honeycomb Structure by Sol–Gel Process , 2010 .

[225]  Di Zhang,et al.  Sonochemical fabrication of morpho-genetic TiO2 with hierarchical structures for photocatalyst , 2010 .

[226]  Martin Winter,et al.  Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? , 1997 .

[227]  Justin C. Lytle,et al.  The right kind of interior for multifunctional electrode architectures: carbon nanofoam papers with aperiodic submicrometre pore networks interconnected in 3D , 2011 .

[228]  D. Zhao,et al.  Mesoporous Monocrystalline TiO2 and Its Solid-State Electrochemical Properties , 2009 .

[229]  C. E. Tracy,et al.  Preparation and Lithium Insertion Properties of Mesoporous Vanadium Oxide , 2002 .

[230]  G. Lei,et al.  High capacity three-dimensional ordered macroporous CoFe2O4 as anode material for lithium ion batteries , 2010 .

[231]  Yu Zhang,et al.  Superior electrode performance of mesoporous hollow TiO2 microspheres through efficient hierarchical nanostructures , 2011 .

[232]  Peter G. Bruce,et al.  Energy storage beyond the horizon: Rechargeable lithium batteries , 2008 .

[233]  Doron Aurbach,et al.  Diffusion Coefficients of Lithium Ions during Intercalation into Graphite Derived from the Simultaneous Measurements and Modeling of Electrochemical Impedance and Potentiostatic Intermittent Titration Characteristics of Thin Graphite Electrodes , 1997 .

[234]  B. Hatton,et al.  Past, Present, and Future of Periodic Mesoporous OrganosilicasThe PMOs , 2005 .

[235]  Nansheng Xu,et al.  Sulfur-carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte , 2002 .

[236]  A. Stein Energy storage: batteries take charge. , 2011, Nature nanotechnology.

[237]  Yong Wang,et al.  Template‐Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity , 2006 .

[238]  Guang Li,et al.  Improved electrode performance of mesoporous β-In2S3 microspheres for lithium ion batteries using carbon coated microspheres , 2011 .

[239]  Yi Cui,et al.  Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. , 2011, Nano letters.

[240]  W. Bennett,et al.  An Approach to Make Macroporous Metal Sheets as Current Collectors for Lithium-Ion Batteries , 2010 .