Large deflection dynamic analysis of space frames

A robust numerical procedure based on the incremental secant stiffness concept for a large deflection static and dynamic analysis of space frames is described. The proposed method is capable of handling the nonlinear static post-buckling and dynamic analysis of space frames undergoing arbitrarily large rotations in three dimensional space efficiently and accurately. The technique can be easily implemented in an analysis program for framed structures to upgrade its capacity in predicting dynamic and nonlinear behaviour of frames. Numerical examples are given to illustrate the versatility of the computer method in handling the large deflection and dynamic behaviour of clamped beam, curved cantilever and space frame.

[1]  Graham H. Powell,et al.  Theory of Nonlinear Elastic Structures , 1969 .

[2]  Aslam Kassimali,et al.  Large deformations of framed structures under static and dynamic loads , 1976 .

[3]  Alan Jennings,et al.  Frame Analysis including Change of Geometry , 1968 .

[4]  J. L. Meek Matrix Structural Analysis , 1971 .

[5]  Semih S. Tezcan,et al.  Tangent Stiffness Matrix for Space Frame Members , 1969 .

[6]  D. J. Dawe,et al.  Finite element applications to thin-walled structures , 1991 .

[7]  F. W. Williams,et al.  AN APPROACH TO THE NON-LINEAR BEHAVIOUR OF THE MEMBERS OF A RIGID JOINTED PLANE FRAMEWORK WITH FINITE DEFLECTIONS , 1964 .

[8]  M. Crisfield A FAST INCREMENTAL/ITERATIVE SOLUTION PROCEDURE THAT HANDLES "SNAP-THROUGH" , 1981 .

[9]  R. H. Mallett,et al.  Finite Element Analysis of Nonlinear Structures , 1968 .

[10]  J. C. Simo,et al.  A finite strain beam formulation. The three-dimensional dynamic problem. Part I , 1985 .

[11]  Hsiao Kuo-Mo,et al.  A corotational procedure that handles large rotations of spatial beam structures , 1987 .

[12]  H. Saunders,et al.  Finite element procedures in engineering analysis , 1982 .

[13]  Siu-Lai Chan Geometric and material non‐linear analysis of beam‐columns and frames using the minimum residual displacement method , 1988 .

[14]  M. Géradin,et al.  A beam finite element non‐linear theory with finite rotations , 1988 .

[15]  Alf Samuelsson,et al.  Finite Elements in Nonlinear Mechanics , 1978 .

[16]  Jerome J. Connor,et al.  Nonlinear Analysis of Elastic Framed Structures , 1968 .

[17]  C. Oran Tangent Stiffness in Plane Frames , 1973 .

[18]  M. Crisfield A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements , 1990 .

[19]  Graham H. Powell,et al.  Finite element analysis of non-linear static and dynamic response , 1977 .

[20]  K. Bathe,et al.  FINITE ELEMENT FORMULATIONS FOR LARGE DEFORMATION DYNAMIC ANALYSIS , 1975 .

[21]  K. Bathe,et al.  Elastic-plastic large deformation static and dynamic analysis , 1976 .

[22]  W. Wunderlich Nonlinear Finite Element Analysis in Structural Mechanics , 1981 .

[23]  Siu Lai Chan,et al.  Large deflection kinematic formulations for three-dimensional framed structures , 1992 .

[24]  J. L. Meek,et al.  Geometrically nonlinear analysis of space frames by an incremental iterative technique , 1984 .

[25]  Gouri Dhatt,et al.  Incremental displacement algorithms for nonlinear problems , 1979 .

[26]  Manolis Papadrakakis,et al.  Post-buckling analysis of spatial structures by vector iteration methods , 1981 .

[27]  J. C. Simo,et al.  A three-dimensional finite-strain rod model. Part II: Computational aspects , 1986 .

[28]  James M. Gere,et al.  Analysis of framed structures , 1965 .

[29]  D. Karamanlidis,et al.  Large Deflection Finite Element Analysis of Pre- and Postcritical Response of Thin Elastic Frames , 1981 .

[30]  T. Y. Yang,et al.  A simple element for static and dynamic response of beams with material and geometric nonlinearities , 1984 .

[31]  T. Belytschko,et al.  Large displacement, transient analysis of space frames , 1977 .

[32]  S. Remseth,et al.  Nonlinear static and dynamic analysis of framed structures , 1979 .

[33]  G. Powell,et al.  Improved iteration strategy for nonlinear structures , 1981 .