Randomized reduced forward models for efficient Metropolis–Hastings MCMC, with application to subsurface fluid flow and capacitance tomography

Bayesian modelling and computational inference by Markov chain Monte Carlo (MCMC) is a principled framework for large-scale uncertainty quantification, though is limited in practice by computational cost when implemented in the simplest form that requires simulating an accurate computer model at each iteration of the MCMC. The delayed acceptance Metropolis–Hastings MCMC leverages a reduced model for the forward map to lower the compute cost per iteration, though necessarily reduces statistical efficiency that can, without care, lead to no reduction in the computational cost of computing estimates to a desired accuracy. Randomizing the reduced model for the forward map can dramatically improve computational efficiency, by maintaining the low cost per iteration but also avoiding appreciable loss of statistical efficiency. Randomized maps are constructed by a posteriori adaptive tuning of a randomized and locally-corrected deterministic reduced model. Equivalently, the approximated posterior distribution may be viewed as induced by a modified likelihood function for use with the reduced map, with parameters tuned to optimize the quality of the approximation to the correct posterior distribution. Conditions for adaptive MCMC algorithms allow practical approximations and algorithms that have guaranteed ergodicity for the target distribution. Good statistical and computational efficiencies are demonstrated in examples of calibration of large-scale numerical models of geothermal reservoirs and electrical capacitance tomography.

[1]  Anthony Lee,et al.  Accelerating Metropolis-Hastings algorithms by Delayed Acceptance , 2015, Foundations of Data Science.

[2]  M. Birman,et al.  ESTIMATES OF SINGULAR NUMBERS OF INTEGRAL OPERATORS , 1977 .

[3]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[4]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[5]  Michael Andrew Christie,et al.  Tenth SPE Comparative Solution Project: a comparison of upscaling techniques , 2001 .

[6]  James O. Berger,et al.  Markov chain Monte Carlo-based approaches for inference in computationally intensive inverse problems , 2003 .

[7]  A. O'Hagan,et al.  Predicting the output from a complex computer code when fast approximations are available , 2000 .

[8]  Van Genuchten,et al.  A closed-form equation for predicting the hydraulic conductivity of unsaturated soils , 1980 .

[9]  M. Quiroz Speeding Up MCMC by Delayed Acceptance and Data Subsampling , 2015 .

[10]  Charles J. Geyer,et al.  Practical Markov Chain Monte Carlo , 1992 .

[11]  J. Andrés Christen,et al.  Sampling hyperparameters in hierarchical models: Improving on Gibbs for high-dimensional latent fields and large datasets , 2018, Commun. Stat. Simul. Comput..

[12]  E. Somersalo,et al.  Statistical and computational inverse problems , 2004 .

[13]  K. Pruess,et al.  TOUGH2-A General-Purpose Numerical Simulator for Multiphase Fluid and Heat Flow , 1991 .

[14]  Tiangang Cui,et al.  Data‐driven model reduction for the Bayesian solution of inverse problems , 2014, 1403.4290.

[15]  Mario Bertero,et al.  Introduction to Inverse Problems in Imaging , 1998 .

[16]  Yalchin Efendiev,et al.  Preconditioning Markov Chain Monte Carlo Simulations Using Coarse-Scale Models , 2006, SIAM J. Sci. Comput..

[17]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[18]  Colin Fox,et al.  Fast Sampling in a Linear-Gaussian Inverse Problem , 2015, SIAM/ASA J. Uncertain. Quantification.

[19]  J. Hadamard Sur les problemes aux derive espartielles et leur signification physique , 1902 .

[20]  E. Okandan Geothermal Reservoir Engineering , 1987 .

[21]  Karen Willcox,et al.  Parameter and State Model Reduction for Large-Scale Statistical Inverse Problems , 2010, SIAM J. Sci. Comput..

[22]  R. Dobrushin,et al.  ESTIMATES OF SINGULAR NUMBERS OF INTEGRAL OPERATORS , 2017 .

[23]  J. Rosenthal,et al.  Adaptive Gibbs samplers and related MCMC methods , 2011, 1101.5838.

[24]  M. O'Sullivan Geothermal reservoir simulation , 1985 .

[25]  Daniel Watzenig,et al.  A review of statistical modelling and inference for electrical capacitance tomography , 2009 .

[26]  Haavard Rue,et al.  Think continuous: Markovian Gaussian models in spatial statistics , 2011, 1110.6796.

[27]  E. Somersalo,et al.  Statistical inverse problems: discretization, model reduction and inverse crimes , 2007 .

[28]  Tiangang Cui,et al.  A posteriori stochastic correction of reduced models in delayed‐acceptance MCMC, with application to multiphase subsurface inverse problems , 2018 .

[29]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[30]  Andrew M. Stuart,et al.  Iterative updating of model error for Bayesian inversion , 2017, 1707.04246.

[31]  Leonhard Held,et al.  Gaussian Markov Random Fields: Theory and Applications , 2005 .

[32]  David Higdon,et al.  A Primer on Space-Time Modeling from a Bayesian Perspective , 2006 .

[33]  Karen Willcox,et al.  A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems , 2015, SIAM Rev..

[34]  T. J. Dodwell,et al.  A Hierarchical Multilevel Markov Chain Monte Carlo Algorithm with Applications to Uncertainty Quantification in Subsurface Flow , 2013, SIAM/ASA J. Uncertain. Quantification.

[35]  Todd A. Oliver,et al.  Bayesian uncertainty quantification applied to RANS turbulence models , 2011 .

[36]  Tiangang Cui,et al.  Bayesian calibration of a large‐scale geothermal reservoir model by a new adaptive delayed acceptance Metropolis Hastings algorithm , 2011 .

[37]  C. Fox,et al.  Coupled MCMC with a randomized acceptance probability , 2012, 1205.6857.

[38]  Aretha L. Teckentrup,et al.  Random forward models and log-likelihoods in Bayesian inverse problems , 2017, SIAM/ASA J. Uncertain. Quantification.

[39]  C. Fox,et al.  Markov chain Monte Carlo Using an Approximation , 2005 .

[40]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[41]  Johnathan M. Bardsley,et al.  MCMC-Based Image Reconstruction with Uncertainty Quantification , 2012, SIAM J. Sci. Comput..

[42]  A. Sokal Monte Carlo Methods in Statistical Mechanics: Foundations and New Algorithms , 1997 .

[43]  Victor M. Calo,et al.  Fast multiscale reservoir simulations using POD-DEIM model reduction , 2015, ANSS 2015.

[44]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[45]  S. Varadhan,et al.  Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions , 1986 .

[46]  Andrea Manzoni,et al.  Accurate Solution of Bayesian Inverse Uncertainty Quantification Problems Combining Reduced Basis Methods and Reduction Error Models , 2016, SIAM/ASA J. Uncertain. Quantification.

[47]  Christian Schwarzl Robust parameter estimation in ECT using MCMC sampling , 2008 .

[48]  J. Rosenthal,et al.  Coupling and Ergodicity of Adaptive Markov Chain Monte Carlo Algorithms , 2007, Journal of Applied Probability.