Unsupervised Image Segmentation Using EM Algorithm by Histogram

In this paper, an efficient approach to search for the global threshold of image using Gaussian mixture model is proposed. Firstly, a gray-level histogram of an image is represented as a function of the frequencies of gray-level. Then to fit the Gaussian mixtures to the histogram of image, the Expectation Maximisation (EM) algorithm is developed to estimate the number of Gaussian mixture of such histograms. Finally, the optimal threshold which is the average of these means is chosen. The paper compares the new method with the classical discriminate analysis method of Otsu's. And the experimental results show that the new algorithm performs better than that of Otsu's.