Pressing challenges in halide perovskite photovoltaics—from the atomic to module level

[1]  Seong Sik Shin,et al.  Efficient perovskite solar cells via improved carrier management , 2021, Nature.

[2]  Austin C. Flick,et al.  Rapid Open-Air Fabrication of Perovskite Solar Modules , 2020 .

[3]  B. Rech,et al.  Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction , 2020, Science.

[4]  J. Berry,et al.  Assessing health and environmental impacts of solvents for producing perovskite solar cells , 2020, Nature Sustainability.

[5]  P. Nellist,et al.  Atomic-scale microstructure of metal halide perovskite , 2020, Science.

[6]  H. J. Yoon,et al.  Self‐Assembled Monolayers as Interface Engineering Nanomaterials in Perovskite Solar Cells , 2020, Advanced Energy Materials.

[7]  A. Petrozza,et al.  Defect Tolerance and Intolerance in Metal‐Halide Perovskites , 2020, Advanced Energy Materials.

[8]  Dong Hoe Kim,et al.  Sustainable lead management in halide perovskite solar cells , 2020, Nature Sustainability.

[9]  Duncan N. Johnstone,et al.  Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites , 2020, Nature.

[10]  Sean P. Dunfield,et al.  From Defects to Degradation: A Mechanistic Understanding of Degradation in Perovskite Solar Cell Devices and Modules , 2020, Advanced Energy Materials.

[11]  T. Xu,et al.  On-device lead sequestration for perovskite solar cells , 2020, Nature.

[12]  Kai Zhu,et al.  Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures , 2020, Nature Energy.

[13]  Jinsong Huang,et al.  Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic films , 2019, Science Advances.

[14]  Jun Hee Lee,et al.  Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide , 2019, Science.

[15]  Edward H. Sargent,et al.  Challenges for commercializing perovskite solar cells , 2018, Science.