Effect of Composition on Thermoelectric Properties of As-Cast Materials: The Cu12−xCoxSb4S13−ySey Case

[1]  Mit H. Naik,et al.  Electronic and Thermoelectric Properties of Transition Metal Substituted Tetrahedrites , 2018 .

[2]  Jinfeng Dong,et al.  Enhanced thermoelectric performance of Cu12Sb4S13−δ tetrahedrite via nickel doping , 2018, Science China Materials.

[3]  C. Fanciulli,et al.  One step synthesis and sintering of Ni and Zn substituted tetrahedrite as thermoelectric material , 2017 .

[4]  B. Lenoir,et al.  Tetrahedrites: Prospective Novel Thermoelectric Materials , 2016 .

[5]  D. Morelli,et al.  Tetrahedrites: Earth-Abundant Thermoelectric Materials with Intrinsically Low Thermal Conductivity , 2016 .

[6]  E. Bauer,et al.  Thermoelectric properties of Cd doped tetrahedrite: Cu12−xCdxSb4S13 , 2016 .

[7]  A. P. Gonçalves,et al.  Effect of Ni, Bi and Se on the tetrahedrite formation , 2016 .

[8]  J. Vaney,et al.  Thermoelectric properties of double-substituted tetrahedrites Cu12-xCoxSb4-yTeyS13. , 2016, Dalton transactions.

[9]  Manuel F. C. Pereira,et al.  Fast and scalable preparation of tetrahedrite for thermoelectrics via glass crystallization , 2016 .

[10]  V. Ozoliņš,et al.  Phase Stability, Crystal Structure, and Thermoelectric Properties of Cu12Sb4S13–xSex Solid Solutions , 2016 .

[11]  F. Gascoin,et al.  Thermoelectric Materials: A New Rapid Synthesis Process for Nontoxic and High-Performance Tetrahedrite Compounds , 2016 .

[12]  R. Chetty,et al.  Tetrahedrites as thermoelectric materials: an overview , 2015 .

[13]  Manish Jain,et al.  Thermoelectric properties of Co substituted synthetic tetrahedrite , 2015 .

[14]  D. Morelli,et al.  Solvothermal Synthesis of Tetrahedrite: Speeding Up the Process of Thermoelectric Material Generation. , 2015, ACS applied materials & interfaces.

[15]  S. Gascoin,et al.  Structural stability of the synthetic thermoelectric ternary and nickel-substituted tetrahedrite phases , 2015 .

[16]  V. Ozoliņš,et al.  Increasing the thermoelectric figure of merit of tetrahedrites by Co-doping with nickel and zinc , 2015 .

[17]  S. Suwas,et al.  Thermoelectric properties of a Mn substituted synthetic tetrahedrite. , 2015, Physical chemistry chemical physics : PCCP.

[18]  V. Ozoliņš,et al.  High Performance Thermoelectricity in Earth‐Abundant Compounds Based on Natural Mineral Tetrahedrites , 2013 .

[19]  A. Yamamoto,et al.  High-performance thermoelectric mineral Cu12−xNixSb4S13 tetrahedrite , 2013 .

[20]  K. Suekuni,et al.  Thermoelectric Properties of Mineral Tetrahedrites Cu10Tr2Sb4S13 with Low Thermal Conductivity , 2012 .

[21]  Tim Holland,et al.  Unit cell refinement from powder diffraction data: the use of regression diagnostics , 1997, Mineralogical Magazine.

[22]  L. Alcácer,et al.  ANISOTROPY OF THERMOPOWER IN N-METHYL-N-ETHYLMORPHOLINIUM BISTETRACYANOQUINODIMETHANE, MEM(TCNQ)2, IN THE REGION OF THE HIGH-TEMPERATURE PHASE-TRANSITIONS , 1984 .

[23]  R. Huebener Thermoelectric Power of Lattice Vacancies in Gold , 1964 .