조명 변화에 강인한 상호 정보량 기반 스테레오 정합 기법
暂无分享,去创建一个
본 논문에서는 조명 변화에 강인한 상호 정보량 기반의 스테레오 정합 기법을 제안한다. 일반적으로 다양한 조명 조건에서 취득한 스테레오 영상은 좌우 영상 간에 컬러의 변화가 발생하기 때문에 정확한 스테레오 정합점을 찾는 것이 쉽지 않다. 이 경우, 컬러를 보정하는 작업을 우선 수행하는 것이 일반적이다. 그러나, 좌우 스테레오 영상에 대해서는 컬러 값을 동일하게 보정하는 작업도 시점 차이로 인한 좌우 영상의 변화로 인해서 좌우 영상에 대한 정합 정보가 요구되므로 쉽지 않다. 본 논문에서는 다양한 조명 조건에서 취득한 영상에 강인한 스테레오 정합 기법을 제안한다. 이를 위해서 선형적인 관계를 갖는 로그-색도 (log-chromaticity) 컬러 공간으로 변형을 수행하였고, 이 컬러 공간에서 상호 정보량에 기반한 새로운 스테레오 정합 비용 (cost)을 제안하였다. 제안하는 비용은 가중치가 적용된 상호 정보량과 SIFT (Scale Invariant Feature Transform) 묘사 벡터의 정보를 화소 (pixel)마다 적응적으로 결합한다. 또한, 보다 정확한 변위 지도 예측을 위해서 세그먼트 기반의 평면 제한 조건도 제안하는 비용에 포함되었다. 다양한 실험 데이터에 대해서 테스트한 결과, 제안하는 방법이 기존의 방법들에 비해서 보다 정확한 변위 지도 결과를 얻는 것을 확인하였다.