Dipole excitation of surface plasmon on a conducting sheet: Finite element approximation and validation

Abstract We formulate and validate a finite element approach to the propagation of a slowly decaying electromagnetic wave, called surface plasmon–polariton, excited along a conducting sheet, e.g., a single-layer graphene sheet, by an electric Hertzian dipole. By using a suitably rescaled form of time-harmonic Maxwell's equations, we derive a variational formulation that enables a direct numerical treatment of the associated class of boundary value problems by appropriate curl-conforming finite elements. The conducting sheet is modeled as an idealized hypersurface with an effective electric conductivity. The requisite weak discontinuity for the tangential magnetic field across the hypersurface can be incorporated naturally into the variational formulation. We carry out numerical simulations for an infinite sheet with constant isotropic conductivity embedded in two spatial dimensions; and validate our numerics against the closed-form exact solution obtained by the Fourier transform in the tangential coordinate. Numerical aspects of our treatment such as an absorbing perfectly matched layer, as well as local refinement and a posteriori error control are discussed.

[1]  Xiang Zhang,et al.  Compact magnetic antennas for directional excitation of surface plasmons. , 2012, Nano letters.

[2]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[3]  M. Dewapriya,et al.  Influence of hydrogen functionalization on the fracture strength of graphene and the interfacial properties of graphene–polymer nanocomposite , 2015 .

[4]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[5]  Andreas C. Cangellaris,et al.  A general approach for the development of unsplit-field time-domain implementations of perfectly matched layers for FDTD grid truncation , 1996 .

[6]  Elliptic Problems FINITE ELEMENT METHODS FOR , 2014 .

[7]  Kurt Inderbitzin The Deal , 2005 .

[8]  Hossein Mosallaei,et al.  Surface plasmon engineering in graphene functionalized with organic molecules: a multiscale theoretical investigation. , 2014, Nano letters.

[9]  A. Ferreira,et al.  A PRIMER ON SURFACE PLASMON-POLARITONS IN GRAPHENE , 2013, 1302.2317.

[10]  Y. Chau,et al.  A comparative study of solid-silver and silver-shell nanodimers on surface plasmon resonances , 2011 .

[11]  G. Burkard,et al.  Spin qubits in graphene quantum dots , 2006, cond-mat/0611252.

[12]  R. Gorbachev Van der Waals heterostructures , 2014, Nature Reviews Methods Primers.

[13]  A. Kornyshev,et al.  Fundamentals and applications of self-assembled plasmonic nanoparticles at interfaces. , 2016, Chemical Society reviews.

[14]  Claus Müller,et al.  Foundations of the mathematical theory of electromagnetic waves , 1969 .

[15]  Weng Cho Chew,et al.  A 3D perfectly matched medium from modified maxwell's equations with stretched coordinates , 1994 .

[16]  F. J. Garcia-Vidal,et al.  Fields radiated by a nanoemitter in a graphene sheet , 2011, 1104.3558.

[17]  Timothy A. Davis,et al.  Algorithm 915, SuiteSparseQR: Multifrontal multithreaded rank-revealing sparse QR factorization , 2011, TOMS.

[18]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[19]  Xiang Zhang,et al.  Introduction to THz Wave Photonics , 2009 .

[20]  R. RannacherInstitut,et al.  Weighted a Posteriori Error Control in Fe Methods , 1995 .

[21]  Martin A. Green,et al.  Harnessing plasmonics for solar cells , 2012, Nature Photonics.

[22]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[23]  R. Tibshirani,et al.  An introduction to the bootstrap , 1993 .

[24]  S. Roche,et al.  Introduction to Graphene-Based Nanomaterials: From Electronic Structure to Quantum Transport Luis E.F. Foa Torres, Stephan Roche, and Jean-Christophe Charlier , 2014, MRS Bulletin.

[25]  Benjamin Gallinet,et al.  Numerical methods for nanophotonics: standard problems and future challenges , 2015 .

[26]  Lucas Chesnel,et al.  T-Coercivity for the Maxwell Problem with Sign-Changing Coefficients , 2014 .

[27]  Fengnian Xia,et al.  Plasmons and screening in monolayer and multilayer black phosphorus. , 2014, Physical review letters.

[28]  E. V. Chulkov,et al.  Theory of surface plasmons and surface-plasmon polaritons , 2007 .

[29]  T. Richter,et al.  SOLUTIONS OF 3D NAVIER-STOKES BENCHMARK PROBLEMS WITH ADAPTIVE FINITE ELEMENTS , 2006 .

[30]  R. Kress,et al.  Integral equation methods in scattering theory , 1983 .

[31]  Jianming Jin,et al.  Finite Element Analysis of Antennas and Arrays , 2008 .

[32]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[33]  Luca Heltai,et al.  The deal.II Library, Version 8.1 , 2013, ArXiv.

[34]  G. W. Hanson,et al.  Erratum: “Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene” [J. Appl. Phys. 103, 064302 (2008)] , 2013 .

[35]  E. G. Cullwick Principles of Electrodynamics , 1967 .

[36]  Vitaliy Gyrya,et al.  Dispersion reducing methods for edge discretizations of the electric vector wave equation , 2015, J. Comput. Phys..

[37]  J. Zenneck Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie , 1907 .

[38]  Gang Bao,et al.  An adaptive edge element method with perfectly matched absorbing layers for wave scattering by biperiodic structures , 2010, Math. Comput..

[39]  Dmytro Pesin,et al.  Spintronics and pseudospintronics in graphene and topological insulators. , 2012, Nature materials.

[40]  R. King,et al.  Lateral Electromagnetic Waves: Theory and Applications to Communications, Geophysical Exploration, and Remote Sensing , 1992 .

[41]  Sergey Mikhailov,et al.  Excitation of two-dimensional plasmon polaritons by an incident electromagnetic wave at a contact , 2007 .

[42]  Susanne C. Brenner,et al.  An Adaptive $$\varvec{P_1}$$P1 Finite Element Method for Two-Dimensional Transverse Magnetic Time Harmonic Maxwell’s Equations with General Material Properties and General Boundary Conditions , 2016, J. Sci. Comput..

[43]  Ronald H. W. Hoppe,et al.  Finite element methods for Maxwell's equations , 2005, Math. Comput..

[44]  G. Hanson Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene , 2007, cond-mat/0701205.

[45]  Arash Mafi,et al.  Excitation of discrete and continuous spectrum for a surface conductivity model of graphene , 2011 .

[46]  G. Navickaite,et al.  Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns , 2014, Science.

[47]  F. Koppens,et al.  Graphene plasmonics: a platform for strong light-matter interactions. , 2011, Nano letters.

[48]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[49]  M. Luskin,et al.  On solutions of Maxwell's equations with dipole sources over a thin conducting film , 2015, 1509.04067.

[50]  F. Shimabukuro,et al.  The Essence of Dielectric Waveguides , 2008 .

[51]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[52]  Susanne C. Brenner,et al.  An Adaptive P1 Finite Element Method for Two-Dimensional Maxwell’s Equations , 2013, J. Sci. Comput..

[53]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[54]  Rolf Rannacher,et al.  A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .