Crystal structure of the nickel–iron hydrogenase from Desulfovibrio gigas

[1]  S. Boxer,et al.  Casting a cold eye over myoglobin , 1994, Nature Structural Biology.

[2]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[3]  P. Lindahl,et al.  STABILITY OF THE NI-C STATE AND OXIDATIVE TITRATIONS OF DESULFOVIBRIO GIGAS HYDROGENASE MONITORED BY EPR AND ELECTRONIC ABSORPTION SPECTROSCOPIES , 1994 .

[4]  Wolfgang Kabsch,et al.  Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants , 1993 .

[5]  O. Sorgenfrei,et al.  Influence of illumination on the electronic interaction between 77Se and nickel in active F420‐non‐reducing hydrogenase from Methanococcus voltae , 1993, FEBS letters.

[6]  H. D. Peck,et al.  Carboxy‐terminal processing of the large subunit of [NiFe] hydrogenases , 1993, FEBS letters.

[7]  B. Hoffman,et al.  THE HYDROGEN BINDING-SITE IN HYDROGENASE - 35-GHZ ENDOR AND XAS STUDIES OF THE NI-C ACTIVE FORM AND THE NI-L PHOTOPRODUCT , 1993 .

[8]  M. Maroney,et al.  An x-ray absorption spectroscopic study of nickel redox chemistry in hydrogenase , 1993 .

[9]  O. Sorgenfrei,et al.  A novel very small subunit of a selenium containing [NiFe] hydrogenase of Methanococcus voltae is postranslationally processed by cleavage at a defined position. , 1993, European journal of biochemistry.

[10]  M. Mandrand,et al.  Microbial hydrogenases: primary structure, classification, signatures and phylogeny. , 1993, FEMS microbiology reviews.

[11]  Kurt Warncke,et al.  Nature of biological electron transfer , 1992, Nature.

[12]  H. D. Peck,et al.  Structure-function relationships among the nickel-containing hydrogenases. , 1992, FEMS microbiology reviews.

[13]  G. Voordouw Evolution of Hydrogenase Genes , 1992 .

[14]  J. Onuchic,et al.  Pathway analysis of protein electron-transfer reactions. , 1992, Annual review of biophysics and biomolecular structure.

[15]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[16]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[17]  B. Hoffman,et al.  Detection and Characterization of Exchangeable Protons Bound to the Hydrogen-Activation Nickel Site of Desulfovibrio gigas Hydrogenase: A 1H and 2H Q-Band ENDOR Study , 1991 .

[18]  M. Adams,et al.  The structure and mechanism of iron-hydrogenases. , 1990, Biochimica et biophysica acta.

[19]  M. Teixeira,et al.  Redox intermediates of Desulfovibrio gigas [NiFe] hydrogenase generated under hydrogen. Mössbauer and EPR characterization of the metal centers. , 1989, The Journal of biological chemistry.

[20]  G. Voordouw,et al.  Analysis and comparison of nucleotide sequences encoding the genes for [NiFe] and [NiFeSe] hydrogenases from Desulfovibrio gigas and Desulfovibrio baculatus , 1989, Journal of bacteriology.

[21]  M. Teixeira,et al.  EPR studies with 77Se-enriched (NiFeSe) hydrogenase of Desulfovibrio baculatus. Evidence for a selenium ligand to the active site nickel. , 1989, The Journal of biological chemistry.

[22]  J. Sieler Crystallographic Computing 4. Techniques and New Technologies , 1989 .

[23]  R. A. Scott,et al.  Evidence for selenocysteine coordination to the active site nickel in the [NiFeSe]hydrogenases from Desulfovibrio baculatus. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[24]  R. Cammack,et al.  A pulsed EPR study of redox‐dependent hyperfine interactions for the nickel centre of Desulfovibrio gigas hydrogenase , 1988, FEBS letters.

[25]  M. Teixeira,et al.  The three classes of hydrogenases from sulfate-reducing bacteria of the genus Desulfovibrio. , 1988, FEMS microbiology reviews.

[26]  E. Hatchikian,et al.  Kinetic studies of electron transfer between hydrogenase and cytochrome c3 from Desulfovibrio gigas. Electrochemical properties of cytochrome c3 , 1988 .

[27]  R. Cammack,et al.  Nickel and iron-sulphur centres in Desulfovibrio gigas hydrogenase: ESR spectra, redox properties and interactions , 1987 .

[28]  M. Teixeira,et al.  On the active sites of the [NiFe] hydrogenase from Desulfovibrio gigas. Mössbauer and redox-titration studies. , 1987, The Journal of biological chemistry.

[29]  S. Albracht,et al.  EPR evidence for direct interaction of carbon monoxide with nickel in hydrogenase from Chromatium vinosum , 1986 .

[30]  R. Cammack,et al.  ESR-detectable nickel and iron-sulphur centres in relation to the reversible activation of Desulfovibrio gigas hydrogenase , 1986 .

[31]  R. Read Improved Fourier Coefficients for Maps Using Phases from Partial Structures with Errors , 1986 .

[32]  E. C. Slater,et al.  Monovalent nickel in hydrogenase from Chromatium vinosum , 1985, FEBS letters.

[33]  Jones Ta,et al.  Diffraction methods for biological macromolecules. Interactive computer graphics: FRODO. , 1985, Methods in enzymology.

[34]  T. Koetzle,et al.  Synthesis of bimetallic iron-nickel carbonyl clusters: crystal structure of the iron-nickel carbonyl cluster [N(CH3)3CH2Ph][Fe3Ni(CO)8(.mu.-CO)4(.mu.3-H)] , 1984 .

[35]  H. D. Peck,et al.  Hydrogenase, electron-transfer proteins, and energy coupling in the sulfate-reducing bacteria Desulfovibrio. , 1984, Annual review of microbiology.

[36]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[37]  R. Cammack,et al.  Redox properties of the ESR‐detectable nickel in hydrogenase from Desulfovibrio gigas , 1982 .

[38]  H. Schenk,et al.  Computing in Crystallography , 1978 .

[39]  M. Bruschi,et al.  Characterization of the periplasmic hydrogenase from Desulfovibrio gigas. , 1978, Biochemical and biophysical research communications.

[40]  R. M. Burnett,et al.  Structure of the semiquinone form of flavodoxin from Clostridum MP. Extension of 1.8 A resolution and some comparisons with the oxidized state. , 1978, Journal of molecular biology.

[41]  G J Williams,et al.  The Protein Data Bank: a computer-based archival file for macromolecular structures. , 1977, Journal of molecular biology.