Subgroup regular sets in Cayley graphs

Let Γ be a graph with vertex set V , and let a and b be nonnegative integers. A subset C of V is called an (a, b)-regular set in Γ if every vertex in C has exactly a neighbors in C and every vertex in V \ C has exactly b neighbors in C. In particular, (0, 1)-regular sets and (1, 1)-regular sets in Γ are called perfect codes and total perfect codes in Γ, respectively. A subset C of a group G is said to be an (a, b)-regular set of G if there exists a Cayley graph of G which admits C as an (a, b)-regular set. In this paper we prove that, for any generalized dihedral group G or any group G of order 4p or pq for some primes p and q, if a nontrivial subgroup H of G is a (0, 1)-regular set of G, then it must also be an (a, b)-regular set of G for any 0 6 a 6 |H | − 1 and 0 6 b 6 |H | such that a is even when |H | is odd. A similar result involving (1, 1)-regular sets of such groups is also obtained in the paper.

[1]  Jan Kratochvíl,et al.  Perfect codes over graphs , 1986, J. Comb. Theory, Ser. B.

[2]  Frank Harary,et al.  Graph Theory , 2016 .

[3]  Sándor Szabó,et al.  Factoring Finite Abelian Groups by Subsets with Maximal Span , 2006, SIAM Journal on Discrete Mathematics.

[4]  O. Rothaus,et al.  A combinatorial problem in the symmetric group , 1966 .

[5]  Michael Dinitz,et al.  Full Rank Tilings of Finite Abelian Groups , 2006, SIAM J. Discret. Math..

[6]  P. Mahadevan,et al.  An overview , 2007, Journal of Biosciences.

[7]  Sanming Zhou Total perfect codes in Cayley graphs , 2016, Des. Codes Cryptogr..

[8]  A. D. Sands,et al.  Factoring Groups into Subsets , 2009 .

[9]  Peter J. Slater,et al.  Fundamentals of domination in graphs , 1998, Pure and applied mathematics.

[10]  Georg Hajós,et al.  Über einfache und mehrfache Bedeckung desn-dimensionalen Raumes mit einem Würfelgitter , 1942 .

[11]  R. A. Bailey,et al.  Equitable partitions of Latin‐square graphs , 2018, Journal of Combinatorial Designs.

[12]  Jaeun Lee,et al.  Independent perfect domination sets in Cayley graphs , 2001, J. Graph Theory.

[13]  D. König Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre , 1916 .

[14]  Sanming Zhou,et al.  Regular sets in Cayley graphs , 2020, Journal of Algebraic Combinatorics.

[15]  Italo J. Dejter,et al.  Efficient dominating sets in Cayley graphs , 2003, Discret. Appl. Math..

[16]  Olof Heden,et al.  A survey of perfect codes , 2008, Adv. Math. Commun..

[17]  Binzhou Xia,et al.  Characterization of subgroup perfect codes in Cayley graphs , 2020, Discret. Math..

[18]  Sanming Zhou,et al.  On subgroup perfect codes in Cayley graphs , 2019, Eur. J. Comb..

[19]  P. Cull,et al.  Perfect codes on graphs , 1997, Proceedings of IEEE International Symposium on Information Theory.

[20]  Sanming Zhou,et al.  Perfect Codes in Cayley Graphs , 2016, SIAM J. Discret. Math..

[21]  Sanming Zhou,et al.  Cyclotomic graphs, perfect codes and Frobenius circulants of valency $2p$ or $2p^2$ , 2015 .

[22]  Chris D. Godsil,et al.  ALGEBRAIC COMBINATORICS , 2013 .

[23]  Anna A. Taranenko,et al.  Perfect 2‐colorings of Hamming graphs , 2019, Journal of Combinatorial Designs.

[24]  Sanming Zhou,et al.  Extremal even-cycle-free subgraphs of the complete transposition graphs , 2020, Appl. Math. Comput..

[25]  Domingos M. Cardoso An overview of (κ, τ)-regular sets and their applications , 2019, Discret. Appl. Math..

[26]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[27]  D. G. Fon-Der-Flaass,et al.  Perfect 2-colorings of a hypercube , 2007 .

[28]  S. Goryainov,et al.  On Perfect 2‐Colorings of Johnson Graphs J(v, 3) , 2013 .

[29]  Alexandr Valyuzhenich,et al.  Equitable 2-partitions of the Hamming graphs with the second eigenvalue , 2019, Discret. Math..