Nearly Isometric Embedding by Relaxation

Many manifold learning algorithms aim to create embeddings with low or no distortion (i.e. isometric). If the data has intrinsic dimension d, it is often impossible to obtain an isometric embedding in d dimensions, but possible in s > d dimensions. Yet, most geometry preserving algorithms cannot do the latter. This paper proposes an embedding algorithm that overcomes this problem. The algorithm directly computes, for any data embedding Y, a distortion loss(Y), and iteratively updates Y in order to decrease it. The distortion measure we propose is based on the push-forward Riemannian metric associated with the coordinates Y. The experiments confirm the superiority of our algorithm in obtaining low distortion embeddings.

[1]  张振跃,et al.  Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment , 2004 .

[2]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[3]  Deniz Erdogmus,et al.  Locally Defined Principal Curves and Surfaces , 2011, J. Mach. Learn. Res..

[4]  Kilian Q. Weinberger,et al.  Unsupervised Learning of Image Manifolds by Semidefinite Programming , 2004, CVPR.

[5]  Matthias Hein Intrinsic Dimensionality Estimation of Submanifolds in R , 2005 .

[6]  Kilian Q. Weinberger,et al.  Unsupervised Learning of Image Manifolds by Semidefinite Programming , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[7]  H. Zha,et al.  Principal manifolds and nonlinear dimensionality reduction via tangent space alignment , 2004, SIAM J. Sci. Comput..

[8]  Nakul Verma,et al.  Distance Preserving Embeddings for General n-Dimensional Manifolds , 2012, COLT.

[9]  Ulrike von Luxburg,et al.  Graph Laplacians and their Convergence on Random Neighborhood Graphs , 2006, J. Mach. Learn. Res..

[10]  Larry A. Wasserman,et al.  Minimax Manifold Estimation , 2010, J. Mach. Learn. Res..

[11]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[12]  John M. Lee Introduction to Smooth Manifolds , 2002 .

[13]  A. J. Connolly,et al.  REDUCING THE DIMENSIONALITY OF DATA: LOCALLY LINEAR EMBEDDING OF SLOAN GALAXY SPECTRA , 2009, 0907.2238.

[14]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[15]  Ling Huang,et al.  An Analysis of the Convergence of Graph Laplacians , 2010, ICML.

[16]  D. Donoho,et al.  Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[17]  J. Nash The imbedding problem for Riemannian manifolds , 1956 .

[18]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[19]  L. Delchambre Weighted principal component analysis: a weighted covariance eigendecomposition approach , 2014, 1412.4533.

[20]  B. Nadler,et al.  Diffusion maps, spectral clustering and reaction coordinates of dynamical systems , 2005, math/0503445.

[21]  I. Hassan Embedded , 2005, The Cyber Security Handbook.

[22]  Matthias Hein,et al.  Intrinsic dimensionality estimation of submanifolds in Rd , 2005, ICML.

[23]  John M. Lee Riemannian Manifolds: An Introduction to Curvature , 1997 .