Self-assembly of magnetite nanocubes into helical superstructures

Tuning the twisting in helical nanowires Assembly of inorganic nanoparticles into complex structures often requires a template. Researchers can now assemble helical nanowires out of cubic magnetite nanocrystals by tuning interactions that bind or separate them. Singh et al. floated the nanocrystals on a liquid and aligned them with a magnetic field. After the liquid evaporated, different twisted nanowires remained. The helices varied according to the concentration of nanocrystals, their shape, and the strength of the magnetic field. Competition between weak forces drives this self-assembly and can lead to arrays with the same twist direction. Science, this issue p. 1149 The presence of a magnetic field helps control the balance among different assembly forces. Organizing inorganic nanocrystals into complex architectures is challenging and typically relies on preexisting templates, such as properly folded DNA or polypeptide chains. We found that under carefully controlled conditions, cubic nanocrystals of magnetite self-assemble into arrays of helical superstructures in a template-free manner with >99% yield. Computer simulations revealed that the formation of helices is determined by the interplay of van der Waals and magnetic dipole-dipole interactions, Zeeman coupling, and entropic forces and can be attributed to spontaneous formation of chiral nanocube clusters. Neighboring helices within their densely packed ensembles tended to adopt the same handedness in order to maximize packing, thus revealing a novel mechanism of symmetry breaking and chirality amplification.

[1]  T C Halsey Electrorheological fluids. , 1992, Science.

[2]  P. Král,et al.  Clusters and lattices of particles stabilized by dipolar coupling. , 2012, ACS nano.

[3]  Chih-Jung Chen,et al.  Crystallization and Magnetic Properties of 3D Micrometer-Scale Simple-Cubic Maghemite Superlattices , 2011 .

[4]  Hao Yan,et al.  Control of Self-Assembly of DNA Tubules Through Integration of Gold Nanoparticles , 2009, Science.

[5]  Olli Ikkala,et al.  Switchable Static and Dynamic Self-Assembly of Magnetic Droplets on Superhydrophobic Surfaces , 2013, Science.

[6]  Christopher B. Murray,et al.  Binary nanocrystal superlattice membranes self-assembled at the liquid–air interface , 2010, Nature.

[7]  Liangbiao Chen,et al.  Evolution of an antifreeze glycoprotein , 1999, Nature.

[8]  Dmitri V Talapin,et al.  Polymorphism in AB(13) nanoparticle superlattices: an example of semiconductor-metal metamaterials. , 2005, Journal of the American Chemical Society.

[9]  H. Neal Bertram,et al.  Magnetization processes in ferromagnetic cubes , 1988 .

[10]  Paras N. Prasad,et al.  Field-Directed Self-Assembly of Magnetic Nanoparticles , 2004 .

[11]  M. Ismail,et al.  Synthesis and Some Physical Properties of Magnetite (Fe 3O4) Nanoparticles , 2012 .

[12]  A. Yanase,et al.  Magnetocrystalline Anisotropy of Fe 2 B , 1966 .

[13]  F. Simmel,et al.  DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response , 2011, Nature.

[14]  Kai Sun,et al.  Light-Controlled Self-Assembly of Semiconductor Nanoparticles into Twisted Ribbons , 2010, Science.

[15]  D. Tjaden,et al.  Mutual attraction of superparamagnetic particles , 1980 .

[16]  W. Frith,et al.  Hierarchical self-assembly of chiral fibres from achiral particles , 2012, Interface Focus.

[17]  Chad A. Mirkin,et al.  DNA-mediated nanoparticle crystallization into Wulff polyhedra , 2013, Nature.

[18]  A. Mughal Screw symmetry in columnar crystals , 2013, 1306.2883.

[19]  R. A. Fox,et al.  Some Magnetic Properties of Magnetite (Fe3O4) Microcrystals , 1968 .

[20]  R. O. Erickson,et al.  Tubular Packing of Spheres in Biological Fine Structure , 1973, Science.

[21]  G. Marsaglia Choosing a Point from the Surface of a Sphere , 1972 .

[22]  Peijun Zhang,et al.  A new peptide-based method for the design and synthesis of nanoparticle superstructures: construction of highly ordered gold nanoparticle double helices. , 2008, Journal of the American Chemical Society.

[23]  L. Ceseracciu,et al.  Hierarchical self-assembly of suspended branched colloidal nanocrystals into superlattice structures. , 2011, Nature materials.

[24]  P. Hendriksen,et al.  On spin‐canting in maghemite particles , 1994 .

[25]  D. Weaire,et al.  Dense packings of spheres in cylinders: simulations. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  C. Murray,et al.  Polymorphism in self-assembled AB6 binary nanocrystal superlattices. , 2011, Journal of the American Chemical Society.

[27]  Christopher E. Wilmer,et al.  Nanoscale forces and their uses in self-assembly. , 2009, Small.

[28]  D. Lelie,et al.  DNA-guided crystallization of colloidal nanoparticles , 2008, Nature.

[29]  Chad A Mirkin,et al.  A directional entropic force approach to assemble anisotropic nanoparticles into superlattices. , 2013, Angewandte Chemie.

[30]  Andrew Gelman,et al.  Handbook of Markov Chain Monte Carlo , 2011 .

[31]  B. Kuipers,et al.  Measurement of the zero-field magnetic dipole moment of magnetizable colloidal silica spheres , 2007 .

[32]  Zhengdong Cheng,et al.  Controlled growth of hard-sphere colloidal crystals , 1999, Nature.

[33]  Kang L. Wang,et al.  Multiscale periodic assembly of striped nanocrystal superlattice films on a liquid surface. , 2011, Nano letters.

[34]  Oleg Gang,et al.  Continuous phase transformation in nanocube assemblies. , 2011, Physical review letters.

[35]  W. Kegel,et al.  Helical colloidal sphere structures through thermo-reversible co-assembly with molecular microtubes. , 2013, Angewandte Chemie.

[36]  S. Chikazumi,et al.  Magnetocrystalline Anisotropy of Low Temperature Phase of Magnetite , 1976 .

[37]  Zhongwu Wang,et al.  Shape-controlled synthesis of colloidal superparticles from nanocubes. , 2012, Journal of the American Chemical Society.

[38]  D. Wales,et al.  Self-assembly of anisotropic particles , 2011 .

[39]  D. Pine,et al.  Chiral colloidal clusters , 2008, Nature.

[40]  Hadis Morkoç,et al.  Microwave ferrites, part 1: fundamental properties , 2009 .

[41]  Sabino Veintemillas-Verdaguer,et al.  Surface and Internal Spin Canting in γ-Fe2O3 Nanoparticles , 1999 .

[42]  Zexin Zhang,et al.  Helical packings and phase transformations of soft spheres in cylinders. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  M. Drew,et al.  Construction of helical nanofibers from self-assembling pseudopeptide building blocks: modulating the handedness and breaking the helicity. , 2008, Small.

[44]  Hyungjun Kim,et al.  Chiral arrangement of achiral Au nanoparticles by supramolecular assembly of helical nanofiber templates. , 2014, Journal of the American Chemical Society.

[45]  L. Manna,et al.  Assembly of colloidal semiconductor nanorods in solution by depletion attraction. , 2010, Nano letters.

[46]  H. Sirringhaus,et al.  Binary nanoparticle superlattices in the semiconductor-semiconductor system: CdTe and CdSe. , 2007, Journal of the American Chemical Society.

[47]  S. Stupp,et al.  Spontaneous and X-ray–Triggered Crystallization at Long Range in Self-Assembling Filament Networks , 2010, Science.

[48]  Zhongwu Wang,et al.  Self-Assembled Colloidal Superparticles from Nanorods , 2012, Science.

[49]  Pickett,et al.  Spontaneous chirality in simple systems , 2000, Physical review letters.

[50]  Entropically Driven Helix Formation , 2005, Science.

[51]  George C Schatz,et al.  Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures. , 2013, Nano letters.

[52]  S. A. Hasan,et al.  Sacrificial layer electrophoretic deposition of free-standing multilayered nanoparticle films. , 2009, Chemical communications.

[53]  R. Alcubilla,et al.  Colloidal Crystal Wires , 2008 .

[54]  Taeghwan Hyeon,et al.  Synthesis of uniform ferrimagnetic magnetite nanocubes. , 2009, Journal of the American Chemical Society.

[55]  Sharon C Glotzer,et al.  Entropically patchy particles: engineering valence through shape entropy. , 2013, ACS nano.

[56]  M. Pileni,et al.  Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals , 2004, Nature materials.

[57]  C. Klinke,et al.  Preparation and electrical properties of cobalt-platinum nanoparticle monolayers deposited by the Langmuir-Blodgett technique. , 2008, ACS nano.

[58]  S. Glotzer,et al.  Anisotropy of building blocks and their assembly into complex structures. , 2007, Nature materials.

[59]  R. Popovitz‐Biro,et al.  Metallic nanobowls by galvanic replacement reaction on heterodimeric nanoparticles. , 2012, Small.

[60]  Bartosz A. Grzybowski,et al.  Electrostatic Self-Assembly of Binary Nanoparticle Crystals with a Diamond-Like Lattice , 2006, Science.

[61]  Christopher B. Murray,et al.  Structural diversity in binary nanoparticle superlattices , 2006, Nature.

[62]  David J Wales,et al.  Tilted and helical columnar phases for an axially symmetric discoidal system. , 2008, Physical review letters.

[63]  C. Santangelo,et al.  Self-assembly on a cylinder: a model system for understanding the constraint of commensurability , 2013, 1307.0587.

[64]  Mauri A Kostiainen,et al.  Electrostatic assembly of binary nanoparticle superlattices using protein cages. , 2013, Nature nanotechnology.

[65]  H. Gu,et al.  Synthesis of Ag-Fe3O4 heterodimeric nanoparticles. , 2006, Journal of colloid and interface science.

[66]  Gurvinder Singh,et al.  Dual‐Responsive Nanoparticles and their Self‐Assembly , 2013, Advanced materials.

[67]  David J. Wales,et al.  Rational design of helical architectures , 2009, Proceedings of the National Academy of Sciences.

[68]  Damien Faivre,et al.  Magnetotactic bacteria and magnetosomes. , 2008, Chemical reviews.

[69]  D. Frenkel,et al.  Entropy-driven formation of a superlattice in a hard-sphere binary mixture , 1993, Nature.

[70]  R. Corn,et al.  Self-Assembly of Flux-Closure Polygons from Magnetite Nanocubes. , 2012, The journal of physical chemistry letters.

[71]  M. Kovalenko,et al.  Fatty acid salts as stabilizers in size- and shape-controlled nanocrystal synthesis: the case of inverse spinel iron oxide. , 2007, Journal of the American Chemical Society.

[72]  Qingmin Ji,et al.  Helical arrays of CdS nanoparticles tracing on a functionalized chiral template of glycolipid nanotubes , 2006 .

[73]  Sudhanshu Srivastava,et al.  Helical assemblies of gold nanoparticles. , 2011, Small.

[74]  Frankel,et al.  Magnetic microstructure of magnetotactic bacteria by electron holography , 1998, Science.

[75]  Jonathan V Selinger,et al.  Imaging Nanoscale Patterns on Biologically Derived Microstructures , 2000 .

[76]  Zhiyong Tang,et al.  Self-Assembly of CdTe Nanocrystals into Free-Floating Sheets , 2006, Science.

[77]  P. Bomans,et al.  Direct observation of dipolar chains in iron ferrofluids by cryogenic electron microscopy , 2003, Nature materials.

[78]  M. Engel,et al.  Competition of shape and interaction patchiness for self-assembling nanoplates. , 2013, Nature chemistry.

[79]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[80]  L. V. Woodcock Entropy difference between the face-centred cubic and hexagonal close-packed crystal structures , 1997, Nature.

[81]  Younan Xia,et al.  Self-assembly of spherical colloids into helical chains with well-controlled handedness. , 2003, Journal of the American Chemical Society.

[82]  P. Král,et al.  Dipole-dipole interactions in nanoparticle superlattices. , 2007, Nano letters.