Numerical modeling of spacecraft electric propulsion thrusters

Abstract There is a clear current trend towards the replacement of small chemical thrusters used for spacecraft control by electric propulsion thrusters. These thrusters use a variety of mechanisms to convert electrical power into thrust and, in general, provide superior specific impulse in comparison to chemical systems. Electric propulsion has been under development for the last 40 yr, and almost all thrusters are designed based on experience and experimentation. The present article considers the progress made in numerical simulation of electric propulsion thrusters. Due to the wide range of such devices, attention is restricted to electric propulsion thruster types that are presently in use by orbiting spacecraft. The physical regimes created in these thrusters indicate that a variety of numerical methods is required for accurate numerical simulation ranging from continuum formulations to kinetic approaches. Successes of numerical simulation models are demonstrated through specific examples. It is concluded that numerical simulations can be expected to play a more prominent role in the design and evolution of future electric propulsion thrusters.

[1]  Monika Auweter-Kurtz,et al.  Experimental and numerical investigation of a power augmented thermal arc jet , 2001 .

[2]  Gregory G. Spanjers,et al.  Electromagnetic Effects in the Near Field Plume Exhaust of a Micro-Pulsed-Plasma Thruster , 2002 .

[3]  M. Martinez-Sanchez,et al.  Two-fluid nonequilibrium simulation of hydrogen arcjet thrusters , 1996 .

[4]  G. Butler,et al.  Single and two fluid simulations of arcjet performance , 1992 .

[5]  Andrey A. Shagayda,et al.  Fully Kinetic Modeling of Low-Power Hall Thrusters , 2005 .

[6]  L. Garrigues,et al.  Low frequency oscillations in a stationary plasma thruster , 1998 .

[7]  M. Keidar,et al.  On the magnetic mirror effect in Hall thrusters , 2005 .

[8]  Ian Coxhill,et al.  A Xenon Resistojet Propulsion System for Microsatellites , 2005 .

[9]  L. Garrigues,et al.  Modeling of double stage Hall effect thruster , 2005, IEEE Transactions on Plasma Science.

[10]  Charles K. Birdsall,et al.  Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with neutral atoms, PIC-MCC , 1991 .

[11]  L. Garrigues,et al.  Model study of the influence of the magnetic field configuration on the performance and lifetime of a Hall thruster , 2003 .

[12]  V. Kim Main Physical Features and Processes Determining the Performance of Stationary Plasma Thrusters , 1998 .

[13]  Rodney L. Burton,et al.  Plasmadynamics model for nonequilibrium processes in N2/H2 arcjets , 1995 .

[14]  Michael Keidar,et al.  Vaporization of heated materials into discharge plasmas , 2001 .

[15]  L. Garrigues,et al.  Two-dimensional model of a stationary plasma thruster , 2002 .

[16]  James E. Polk,et al.  Theoretical model of a hollow cathode plasma for the assessment of insert and keeper lifetimes , 2005 .

[17]  C. Fletcher Computational techniques for fluid dynamics , 1992 .

[18]  Eduardo Ahedo,et al.  A model of the two-stage Hall thruster discharge , 2005 .

[19]  Iain D. Boyd,et al.  Computational model of a Hall thruster , 2004, Comput. Phys. Commun..

[20]  J. Adam,et al.  Study of stationary plasma thrusters using two-dimensional fully kinetic simulations , 2004 .

[21]  Pierre Degond,et al.  Numerical simulation of electron transport in the channel region of a stationary plasma thruster , 2002 .

[22]  M. Keidar,et al.  A Hydrodynamic-Based Erosion Model for Hall Thrusters , 2005 .

[23]  M. Keidar,et al.  Modeling of a high-power thruster with anode layer , 2004 .

[24]  Monika Auweter-Kurtz,et al.  High-Power Hydrogen Arcjet Thrusters , 1998 .

[25]  James E. Polk,et al.  Three-Dimensional Particle Simulations of Ion-Optics Plasma Flow and Grid Erosion , 2003 .

[26]  L. Garrigues,et al.  Critical assessment of a two-dimensional hybrid Hall thruster model: Comparisons with experiments , 2004 .

[27]  Manuel Martinez-Sanchez,et al.  A COMPUTATIONAL STUDY OF INTERNAL PHYSICAL EFFECTS IN A HALL THRUSTER , 2002 .

[28]  R. E. Peterkin,et al.  Transport of Magnetic Flux in an Arbitrary Coordinate ALE Code , 1998 .

[29]  Robert Alexander Bond,et al.  Ion thruster extraction grid design and erosion modelling using computer simulation , 1995 .

[30]  M. Keidar,et al.  Plasma flow and plasma–wall transition in Hall thruster channel , 2001 .

[31]  John Michael Fife,et al.  Two-dimensional hybrid particle-in-cell modeling of Hall thrusters , 1995 .

[32]  H. Dan Thomas,et al.  A NUMERICAL STUDY OF A PULSED PLASMA THRUSTER , 2001 .

[33]  Monika Auweter-Kurtz,et al.  1 kW Ammonia Arcjet System Development for a Science Mission to the Moon , 2005 .

[34]  Thomas Stueber,et al.  Discharge Chamber Primary Electron Modeling Activities in 3-Dimension , 2004 .

[35]  Pavlos Mikellides,et al.  Pulsed Plasma Thrusters for Microsatellite Propulsion: Techniques for Optimization , 2000 .

[36]  Iain D. Boyd,et al.  Monte Carlo simulation of nonequilibrium flow in a low-power hydrogen arcjet , 1997 .

[37]  Iain D. Boyd,et al.  Monte Carlo simulation of nonequilibrium flow in low power hydrogen arcjets , 1996 .

[38]  Iain D. Boyd,et al.  Modeling the plasma plume of a hollow cathode , 2004 .

[39]  Iain D. Boyd,et al.  Experimental and numerical investigations of low-density nozzle and plume flows of nitrogen , 1992 .

[40]  Dennis Keefer,et al.  Plasma particle simulation of electrostatic ion thrusters , 1992 .

[41]  L. Garrigues,et al.  Computation of Hall Thruster Performance , 2001 .

[42]  Pavlos Mikellides,et al.  Modeling of ablation-fed pulsed plasma thrusters , 1995 .

[43]  Iain D. Boyd,et al.  Computational and experimental investigations of rarefied flows in small nozzles , 1996 .

[44]  Yevgeny Raitses,et al.  Hall thruster with absorbing electrodes , 2000 .

[45]  Iain Boyd,et al.  GRID EROSION ANALYSIS OF THE T5 ION THRUSTER , 2001 .

[46]  M. Keidar,et al.  Electrical Discharge in the Teflon Cavity of a Coaxial , 2000 .

[47]  G. Bird Molecular Gas Dynamics and the Direct Simulation of Gas Flows , 1994 .

[48]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[49]  H. D. Thomas,et al.  Numerical modeling of a pulsed plasma thruster , 2001 .

[50]  R. Pletcher,et al.  Computational Fluid Mechanics and Heat Transfer. By D. A ANDERSON, J. C. TANNEHILL and R. H. PLETCHER. Hemisphere, 1984. 599 pp. $39.95. , 1986, Journal of Fluid Mechanics.

[51]  Suk C. Kim Calculations of low-Reynolds-number resistojet nozzles , 1994 .

[52]  Andrew D. Ketsdever,et al.  Predicted Performance and Systems Analysis of the Free Molecule Micro-Resistojet , 2000 .

[53]  D. Murray,et al.  Numerical modelling of ion thruster hollow cathode interior flow , 1997 .

[54]  S. Aso,et al.  Numerical Studies on Effect of Nozzle Geometry and of Flow Continuity on Thrust Performance , 2001 .

[55]  K. Komurasaki,et al.  Two-dimensional numerical model of plasma flow in a Hall thruster , 1995 .

[56]  Thomas J. Stueber Ion Thruster Discharge Chamber Simulation in Three Dimension , 2005 .

[57]  James E. Polk,et al.  One-Dimensional Hollow Cathode Model , 2003 .

[58]  Gregory G. Spanjers,et al.  Propellant charring in pulsed plasma thrusters , 2004 .

[59]  Iain D. Boyd,et al.  Extensive Validation of a Monte Carlo Model for Hydrogen Arcjet Flowfields , 1997 .

[60]  P. Turchi,et al.  Pulsed Plasma Thruster , 1998 .

[61]  David Nicolini,et al.  The Design, Development and in-flight Operation of a Water Resistojet Micropropulsion System , 2004 .

[62]  M. Jugroot Numerical Modeling of Neutral and Charged Particles within a Gridded Ion Thruster , 2001 .

[63]  M. Martínez-Sánchez,et al.  A numerical study of low-frequency discharge oscillations in Hall thrusters , 1997 .

[64]  Andrew D. Ketsdever,et al.  Micropropulsion for small spacecraft , 2000 .

[65]  E. Ahedo,et al.  Partial trapping of secondary-electron emission in a Hall thruster plasma , 2005 .

[66]  E. Ahedo,et al.  One-dimensional model of the plasma flow in a Hall thruster , 2001 .

[67]  R. Wirz,et al.  2-D Discharge Chamber Model for Ion Thrusters , 2004 .

[68]  Michael Keidar,et al.  Model of an electrothermal pulsed plasma thruster , 2003 .

[69]  Paul J. Wilbur,et al.  Numerical simulation of ion beam optics for many-grid systems , 2001 .

[70]  James Szabo,et al.  Fully Kinetic Hall Thruster Modeling IEPC-01-341 , 2001 .