Quantum Nonlocality of Arbitrary Dimensional Bipartite States
暂无分享,去创建一个
Ming Li | Shao-Ming Fei | Tinggui Zhang | Bobo Hua | Xianqing Li-Jost | S. Fei | X. Li-Jost | Ming Li | B. Hua | Tinggui Zhang
[1] M. Junge,et al. Large Violation of Bell Inequalities with Low Entanglement , 2010, 1007.3043.
[2] Xianqing Li-Jost,et al. Towards Grothendieck constants and LHV models in quantum mechanics , 2015, 1501.05507.
[3] Lov K. Grover,et al. Quantum computation , 1999, Proceedings Twelfth International Conference on VLSI Design. (Cat. No.PR00013).
[4] N. Gisin. Bell's inequality holds for all non-product states , 1991 .
[5] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[6] X. Zha,et al. Testing the nonlocality of entangled states by a new Bell-like inequality , 2013 .
[7] S. Popescu,et al. Generic quantum nonlocality , 1992 .
[8] N Gisin,et al. Quantum communication between N partners and Bell's inequalities. , 2001, Physical review letters.
[9] Shao-Ming Fei,et al. Gisin's theorem for arbitrary dimensional multipartite states. , 2010, Physical review letters.
[10] N. Gisin,et al. Maximal violation of Bell's inequality for arbitrarily large spin , 1992 .
[11] Ming Li,et al. F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig Bell Inequality, Separability and Entanglement Distillation Bell Inequality, Separability and Entanglement Distillation , 2022 .
[12] Werner,et al. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.
[13] J. Bell. On the Einstein-Podolsky-Rosen paradox , 1964 .
[14] N. Gisin,et al. Grothendieck's constant and local models for noisy entangled quantum states , 2006, quant-ph/0606138.
[15] Alain Aspect,et al. Speakable and Unspeakable in Quantum Mechanics: On the Einstein–Podolsky–Rosen paradox , 2004 .
[16] M. Horodecki,et al. Reduction criterion of separability and limits for a class of distillation protocols , 1999 .
[17] J. Barrett. Nonsequential positive-operator-valued measurements on entangled mixed states do not always violate a Bell inequality , 2001, quant-ph/0107045.
[18] C. H. Oh,et al. All entangled pure states violate a single Bell's inequality. , 2012, Physical review letters.
[19] T. V'ertesi,et al. More efficient Bell inequalities for Werner states , 2008, 0806.0096.
[20] Marek Zukowski,et al. Quantum communication complexity protocol with two entangled qutrits. , 2002, Physical review letters.
[21] J. S. BELLt,et al. The Einstein-Podolsky-Rosen paradox , 1974, Synthese.
[22] Nicolas Gisin,et al. Security bounds in quantum cryptography using d-level systems , 2003, Quantum Inf. Comput..
[23] B. M. Fulk. MATH , 1992 .
[24] R. Werner,et al. Entanglement measures under symmetry , 2000, quant-ph/0010095.
[25] Chunfeng Wu,et al. Gisin's theorem for three qubits. , 2003, Physical review letters.