Quantum Nonlocality of Arbitrary Dimensional Bipartite States

We study the nonlocality of arbitrary dimensional bipartite quantum states. By computing the maximal violation of a set of multi-setting Bell inequalities, an analytical and computable lower bound has been derived for general two-qubit states. This bound gives the necessary condition that a two-qubit state admits no local hidden variable models. The lower bound is shown to be better than that from the CHSH inequality in judging the nonlocality of some quantum states. The results are generalized to the case of high dimensional quantum states, and a sufficient condition for detecting the non-locality has been presented.

[1]  M. Junge,et al.  Large Violation of Bell Inequalities with Low Entanglement , 2010, 1007.3043.

[2]  Xianqing Li-Jost,et al.  Towards Grothendieck constants and LHV models in quantum mechanics , 2015, 1501.05507.

[3]  Lov K. Grover,et al.  Quantum computation , 1999, Proceedings Twelfth International Conference on VLSI Design. (Cat. No.PR00013).

[4]  N. Gisin Bell's inequality holds for all non-product states , 1991 .

[5]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[6]  X. Zha,et al.  Testing the nonlocality of entangled states by a new Bell-like inequality , 2013 .

[7]  S. Popescu,et al.  Generic quantum nonlocality , 1992 .

[8]  N Gisin,et al.  Quantum communication between N partners and Bell's inequalities. , 2001, Physical review letters.

[9]  Shao-Ming Fei,et al.  Gisin's theorem for arbitrary dimensional multipartite states. , 2010, Physical review letters.

[10]  N. Gisin,et al.  Maximal violation of Bell's inequality for arbitrarily large spin , 1992 .

[11]  Ming Li,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig Bell Inequality, Separability and Entanglement Distillation Bell Inequality, Separability and Entanglement Distillation , 2022 .

[12]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[13]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[14]  N. Gisin,et al.  Grothendieck's constant and local models for noisy entangled quantum states , 2006, quant-ph/0606138.

[15]  Alain Aspect,et al.  Speakable and Unspeakable in Quantum Mechanics: On the Einstein–Podolsky–Rosen paradox , 2004 .

[16]  M. Horodecki,et al.  Reduction criterion of separability and limits for a class of distillation protocols , 1999 .

[17]  J. Barrett Nonsequential positive-operator-valued measurements on entangled mixed states do not always violate a Bell inequality , 2001, quant-ph/0107045.

[18]  C. H. Oh,et al.  All entangled pure states violate a single Bell's inequality. , 2012, Physical review letters.

[19]  T. V'ertesi,et al.  More efficient Bell inequalities for Werner states , 2008, 0806.0096.

[20]  Marek Zukowski,et al.  Quantum communication complexity protocol with two entangled qutrits. , 2002, Physical review letters.

[21]  J. S. BELLt,et al.  The Einstein-Podolsky-Rosen paradox , 1974, Synthese.

[22]  Nicolas Gisin,et al.  Security bounds in quantum cryptography using d-level systems , 2003, Quantum Inf. Comput..

[23]  B. M. Fulk MATH , 1992 .

[24]  R. Werner,et al.  Entanglement measures under symmetry , 2000, quant-ph/0010095.

[25]  Chunfeng Wu,et al.  Gisin's theorem for three qubits. , 2003, Physical review letters.