Robust identification of Takagi-Sugeno-Kang fuzzy models using regularization

The identification of fuzzy models can sometimes be a difficult problem, often characterized by lack of data in some regions, collinearities and other data deficiencies, or a sub-optimal choice of model structure. Regularization is suggested as a general method for improving the robustness of standard parameter identification algorithms leading to more accurate and well-behaved fuzzy models. The properties of the method are related to the bias/variance tradeoff, and illustrated with a semi-realistic simulation example.

[1]  Lennart Ljung,et al.  On the Use of Regularization in System Identification , 1993 .

[2]  M. Sugeno,et al.  Structure identification of fuzzy model , 1988 .

[3]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[4]  Tor Arne Johansen,et al.  On Tikhonov regularization, bias and variance in nonlinear system identification , 1997, Autom..

[5]  G. Wahba Spline models for observational data , 1990 .

[6]  Chris Bishop,et al.  Improving the Generalization Properties of Radial Basis Function Neural Networks , 1991, Neural Computation.

[7]  B. F. Swindel Good ridge estimators based on prior information , 1976 .

[8]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[9]  T. Kavli ASMO—Dan algorithm for adaptive spline modelling of observation data , 1993 .

[10]  Lars Kai Hansen,et al.  Generalization performance of regularized neural network models , 1994, Proceedings of IEEE Workshop on Neural Networks for Signal Processing.

[11]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[12]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[13]  T. McKelveyDepartment On the Use of Regularization in System Identification , 1992 .

[14]  Roderick Murray-Smith,et al.  Multiple Model Approaches to Modelling and Control , 1997 .

[15]  F. O’Sullivan A Statistical Perspective on Ill-posed Inverse Problems , 1986 .

[16]  Tor Arne Johansen,et al.  Non-linear predictive control using local models-applied to a batch fermentation process , 1995 .

[17]  Dimitar Filev,et al.  Unified structure and parameter identification of fuzzy models , 1993, IEEE Trans. Syst. Man Cybern..

[18]  Tor Arne Johansen,et al.  Identification of non-linear systems using empirical data and prior knowledge - an optimization approach , 1996, Autom..

[19]  Tor Arne Johansen,et al.  Local learning in local model networks , 1995 .

[20]  C. Kravaris,et al.  Identification of parameters in distributed parameter systems by regularization , 1983, The 22nd IEEE Conference on Decision and Control.

[21]  Tomaso A. Poggio,et al.  Regularization Theory and Neural Networks Architectures , 1995, Neural Computation.

[22]  R.J. Hathaway,et al.  Switching regression models and fuzzy clustering , 1993, IEEE Trans. Fuzzy Syst..

[23]  Tor Arne Johansen,et al.  Identification of non-linear system structure and parameters using regime decomposition , 1995, Autom..

[24]  Elie Bienenstock,et al.  Neural Networks and the Bias/Variance Dilemma , 1992, Neural Computation.

[25]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .

[26]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .