The variability of the BRITE-est Wolf-Rayet binary, γ2 Velorum-I. Photometric and spectroscopic evidence for colliding winds

We report on the first multi-color precision light curve of the bright Wolf-Rayet binary $\gamma^2$ Velorum, obtained over six months with the nanosatellites in the BRITE- Constellation fleet. In parallel, we obtained 488 high-resolution optical spectra of the system. In this first report on the datasets, we revise the spectroscopic orbit and report on the bulk properties of the colliding winds. We find a dependence of both the light curve and excess emission properties that scales with the inverse of the binary separation. When analyzing the spectroscopic properties in combination with the photometry, we find that the phase dependence is caused only by excess emission in the lines, and not from a changing continuum. We also detect a narrow, high-velocity absorption component from the He I $\lambda$5876 transition, which appears twice in the orbit. We calculate smoothed-particle hydrodynamical simulations of the colliding winds and can accurately associate the absorption from He I to the leading and trailing arms of the wind shock cone passing tangentially through our line of sight. The simulations also explain the general strength and kinematics of the emission excess observed in wind lines such as C III $\lambda$5696 of the system. These results represent the first in a series of investigations into the winds and properties of $\gamma^2$ Velorum through multi-technique and multi-wavelength observational campaigns.

[1]  K. Hamaguchi,et al.  To v∞ and beyond! The He i absorption variability across the 2014.6 periastron passage of η Carinae , 2016, 1606.03655.

[2]  N. St-Louis,et al.  Modelling the spectra of colliding winds in the Wolf-Rayet WC7+O binaries WR 42 and WR 79 , 2000 .

[3]  S. Pandey,et al.  PHASE-RESOLVED XMM-NEWTON AND SWIFT OBSERVATIONS OF WR 25 , 2014, 1405.7137.

[4]  L. Koesterke,et al.  Line-blanketed model atmospheres for WR stars , 2002 .

[5]  Hubble Space Telescope Imaging of the WR 38/WR 38a Cluster* , 2004, astro-ph/0404197.

[6]  R. Wawrzaszek,et al.  The BRITE Constellation Nanosatellite Mission: Testing, Commissioning, and Operations , 2016, 1608.00282.

[7]  A. Pollock,et al.  Suzaku monitoring of the Wolf–Rayet binary WR 140 around periastron passage: An approach for quantifying the wind parameters , 2015, 1509.08479.

[8]  G. Mars,et al.  Direct constraint on the distance of $\gamma^2$ Velorum from AMBER/VLTI observations , 2006, astro-ph/0610936.

[9]  D. Sasselov,et al.  Using MOST to reveal the secrets of the mischievous Wolf—Rayet binary CV Ser , 2012 .

[10]  A. Lamberts,et al.  Numerical simulations and infrared spectro-interferometry reveal the wind collision region in γ^2 Velorum , 2017, 1701.01124.

[11]  D. Herbison-Evans,et al.  A Study of γ2 Velorum with a Stellar Intensity Interferometer , 1970 .

[12]  G. Rauw,et al.  ASCA spectroscopy of the hard X-ray emission from the colliding wind interaction in γ2 Velorum , 2000 .

[13]  M. Shara,et al.  The spin rates of O stars in WR + O binaries. I. Motivation, methodology and first results from SALT , 2015, 1511.00046.

[14]  R. Kuschnig,et al.  BRITE-Constellation: Nanosatellites for Precision Photometry of Bright Stars , 2013, Proceedings of the International Astronomical Union.

[15]  William H. Press,et al.  Dynamic mass exchange in doubly degenerate binaries I , 1990 .

[16]  J. Scargle Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data , 1982 .

[17]  Hubble Space Telescope Detection of Optical Companions of WR 86, WR 146, and WR 147: Wind Collision Model Confirmed , 1998 .

[18]  G. Gräfener,et al.  Grids of model spectra for WN stars, ready for use , 2004 .

[19]  J. Eldridge A new-age determination for γ2 Velorum from binary stellar evolution models , 2009, 0909.0504.

[20]  S. Owocki,et al.  Constraints on decreases in η Carinae's mass-loss from 3D hydrodynamic simulations of its binary colliding winds , 2013, 1310.0487.

[21]  D. Vanbeveren,et al.  Radiation-driven winds of hot luminous stars XVI. Expanding atmospheres of massive and very massive stars and the evolution of dense stellar clusters , 2011, 1107.0654.

[22]  R. Stellingwerf Period determination using phase dispersion minimization , 1978 .

[23]  G. Schaefer,et al.  The CHARA Array resolves the long-period Wolf-Rayet binaries WR 137 and WR 138 , 2016, 1606.09586.

[24]  K. Gayley,et al.  Sudden Radiative Braking in Colliding Hot-Star Winds , 1996 .

[25]  H. Pablo,et al.  Massive pulsating stars observed by BRITE-Constellation - I. The triple system β Centauri (Agena) , 2016, 1602.02806.

[26]  Jaymie M. Matthews,et al.  Photometric Determination of Orbital Inclinations and Mass Loss Rates for Wolf-Rayet Stars in WR+O Binaries , 1996 .

[27]  T. Moldenhawer,et al.  An extensive spectroscopic time-series of three Wolf-Rayet stars. I. The lifetime of large-scale structures in the wind of WR 134 , 2016, 1605.04868.

[28]  A. Pollock,et al.  Spectroscopy of the archetype colliding-wind binary WR 140 during the 2009 January periastron passage , 2011 .

[29]  Marco Bonati,et al.  CHIRON—A Fiber Fed Spectrometer for Precise Radial Velocities , 2013, 1309.3971.

[30]  Gordon A. H. Walker,et al.  The MOST Asteroseismology Mission: Ultraprecise Photometry from Space , 2003 .

[31]  D. R. Florkowski,et al.  Multi-frequency variations of the Wolf-Rayet system HD 193793. I : Infrared, X-ray and radio observations , 1990 .

[32]  Western Michigan University,et al.  He II λ4686 EMISSION FROM THE MASSIVE BINARY SYSTEM IN η CAR: CONSTRAINTS TO THE ORBITAL ELEMENTS AND THE NATURE OF THE PERIODIC MINIMA , 2016, The Astrophysical Journal.

[33]  A. Pollock,et al.  A COORDINATED X-RAY AND OPTICAL CAMPAIGN OF THE NEAREST MASSIVE ECLIPSING BINARY, δ ORIONIS Aa. IV. A MULTIWAVELENGTH, NON-LTE SPECTROSCOPIC ANALYSIS , 2015, 1503.03476.

[34]  F. P. Schloerb,et al.  First Results with the IOTA3 Imaging Interferometer: The Spectroscopic Binaries λ Virginis and WR 140 , 2004, astro-ph/0401268.

[35]  NOAO,et al.  First Visual Orbit for the Prototypical Colliding-wind Binary WR 140 , 2011, 1111.1266.

[36]  W. J. Tango,et al.  γ2 Velorum: orbital solution and fundamental parameter determination with SUSI , 2007 .

[37]  A. Moffat,et al.  THE WOLF-RAYET BINARY V444 CYGNI UNDER THE SPECTROSCOPIC MICROSCOPE. I: IMPROVED CHARACTERISTICS OF THE COMPONENTS AND THEIR INTERACTION SEEN IN HE I , 1994 .

[38]  S. Owocki,et al.  Modelling the RXTE light curve of η Carinae from a 3D SPH simulation of its binary wind collision , 2008, 0805.1794.

[39]  Gordon A. H. Walker,et al.  Oscillations in the Massive Wolf-Rayet Star WR 123 with the MOST Satellite , 2005 .

[40]  N. Morrell,et al.  THE HD 5980 MULTIPLE SYSTEM: MASSES AND EVOLUTIONARY STATUS , 2014, 1408.0556.

[41]  D. Sasselov,et al.  WR 110: A SINGLE WOLF–RAYET STAR WITH COROTATING INTERACTION REGIONS IN ITS WIND? , 2011, 1105.0919.

[42]  I. A. Bonnell,et al.  Modelling accretion in protobinary systems , 1995 .

[43]  J. Zorec,et al.  The Unusual 2001 Periastron Passage in the “Clockwork” Colliding-Wind Binary WR 140 , 2003 .

[44]  A. Moffat,et al.  Magellanic Cloud WC/WO Wolf–Rayet stars – II. Colliding winds in binaries , 2001 .

[45]  S. Owocki,et al.  Modelling the Central Constant Emission X-ray component of η Carinae , 2016, 1603.01629.

[46]  C. Evans,et al.  Binary Interaction Dominates the Evolution of Massive Stars , 2012, Science.

[47]  M. Audard,et al.  Wind clumping and the wind-wind collision zone in the Wolf-Rayet binary gamma ² Velorum observations at high and low state. XMM-Newton observations at high and low state , 2004 .

[48]  A. Moffat,et al.  The Wolf-Rayet Binary V444 Cygni Under the Spectroscopic Microscope. II. Physical Parameters of the Wolf-Rayet Wind and the Zone of Wind Collision , 1997 .

[49]  L. Wallace,et al.  AN OPTICAL AND NEAR-INFRARED (2958–9250 Å) SOLAR FLUX ATLAS , 2011 .