The variability of the BRITE-est Wolf-Rayet binary, γ2 Velorum-I. Photometric and spectroscopic evidence for colliding winds
暂无分享,去创建一个
Gerald Handler | Andrzej Pigulski | Rainer Kuschnig | Adam Popowicz | Christopher M. P. Russell | Thomas Eversberg | Michael Corcoran | Noel D. Richardson | Anthony F. J. Moffat | Nicole St-Louis | Tahina Ramiaramanantsoa | Enrico J. Kotze | Werner W. Weiss | Tomer Shenar | Paul Luckas | Brent Miszalski | Jonathan Powles | Herbert Pablo | Gregg A. Wade | E. Kotze | G. Wade | G. Handler | P. Cacella | N. St-Louis | T. Shenar | W. Waldron | H. Pablo | R. Kuschnig | L. St-Jean | T. Eversberg | Lucas St-Jean | Grant M. Hill | Kenji Hamuguchi | Andr'e-Nicolas Chen'e | Wayne Waldron | Marissa M. Kotze | Paulo Cacella | Bernard Heathcote | Terry Bohlsen | Malcolm Locke | A. Moffat | W. Weiss | A. Pigulski | T. Bohlsen | M. Corcoran | C. Russell | N. Richardson | T. Ramiaramanantsoa | A. Popowicz | M. Kotze | B. Miszalski | G. Hill | A. Chen'e | P. Luckas | B. Heathcote | J. Powles | M. Locke | K. Hamuguchi
[1] K. Hamaguchi,et al. To v∞ and beyond! The He i absorption variability across the 2014.6 periastron passage of η Carinae , 2016, 1606.03655.
[2] N. St-Louis,et al. Modelling the spectra of colliding winds in the Wolf-Rayet WC7+O binaries WR 42 and WR 79 , 2000 .
[3] S. Pandey,et al. PHASE-RESOLVED XMM-NEWTON AND SWIFT OBSERVATIONS OF WR 25 , 2014, 1405.7137.
[4] L. Koesterke,et al. Line-blanketed model atmospheres for WR stars , 2002 .
[5] Hubble Space Telescope Imaging of the WR 38/WR 38a Cluster* , 2004, astro-ph/0404197.
[6] R. Wawrzaszek,et al. The BRITE Constellation Nanosatellite Mission: Testing, Commissioning, and Operations , 2016, 1608.00282.
[7] A. Pollock,et al. Suzaku monitoring of the Wolf–Rayet binary WR 140 around periastron passage: An approach for quantifying the wind parameters , 2015, 1509.08479.
[8] G. Mars,et al. Direct constraint on the distance of $\gamma^2$ Velorum from AMBER/VLTI observations , 2006, astro-ph/0610936.
[9] D. Sasselov,et al. Using MOST to reveal the secrets of the mischievous Wolf—Rayet binary CV Ser , 2012 .
[10] A. Lamberts,et al. Numerical simulations and infrared spectro-interferometry reveal the wind collision region in γ^2 Velorum , 2017, 1701.01124.
[11] D. Herbison-Evans,et al. A Study of γ2 Velorum with a Stellar Intensity Interferometer , 1970 .
[12] G. Rauw,et al. ASCA spectroscopy of the hard X-ray emission from the colliding wind interaction in γ2 Velorum , 2000 .
[13] M. Shara,et al. The spin rates of O stars in WR + O binaries. I. Motivation, methodology and first results from SALT , 2015, 1511.00046.
[14] R. Kuschnig,et al. BRITE-Constellation: Nanosatellites for Precision Photometry of Bright Stars , 2013, Proceedings of the International Astronomical Union.
[15] William H. Press,et al. Dynamic mass exchange in doubly degenerate binaries I , 1990 .
[16] J. Scargle. Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data , 1982 .
[17] Hubble Space Telescope Detection of Optical Companions of WR 86, WR 146, and WR 147: Wind Collision Model Confirmed , 1998 .
[18] G. Gräfener,et al. Grids of model spectra for WN stars, ready for use , 2004 .
[19] J. Eldridge. A new-age determination for γ2 Velorum from binary stellar evolution models , 2009, 0909.0504.
[20] S. Owocki,et al. Constraints on decreases in η Carinae's mass-loss from 3D hydrodynamic simulations of its binary colliding winds , 2013, 1310.0487.
[21] D. Vanbeveren,et al. Radiation-driven winds of hot luminous stars XVI. Expanding atmospheres of massive and very massive stars and the evolution of dense stellar clusters , 2011, 1107.0654.
[22] R. Stellingwerf. Period determination using phase dispersion minimization , 1978 .
[23] G. Schaefer,et al. The CHARA Array resolves the long-period Wolf-Rayet binaries WR 137 and WR 138 , 2016, 1606.09586.
[24] K. Gayley,et al. Sudden Radiative Braking in Colliding Hot-Star Winds , 1996 .
[25] H. Pablo,et al. Massive pulsating stars observed by BRITE-Constellation - I. The triple system β Centauri (Agena) , 2016, 1602.02806.
[26] Jaymie M. Matthews,et al. Photometric Determination of Orbital Inclinations and Mass Loss Rates for Wolf-Rayet Stars in WR+O Binaries , 1996 .
[27] T. Moldenhawer,et al. An extensive spectroscopic time-series of three Wolf-Rayet stars. I. The lifetime of large-scale structures in the wind of WR 134 , 2016, 1605.04868.
[28] A. Pollock,et al. Spectroscopy of the archetype colliding-wind binary WR 140 during the 2009 January periastron passage , 2011 .
[29] Marco Bonati,et al. CHIRON—A Fiber Fed Spectrometer for Precise Radial Velocities , 2013, 1309.3971.
[30] Gordon A. H. Walker,et al. The MOST Asteroseismology Mission: Ultraprecise Photometry from Space , 2003 .
[31] D. R. Florkowski,et al. Multi-frequency variations of the Wolf-Rayet system HD 193793. I : Infrared, X-ray and radio observations , 1990 .
[32] Western Michigan University,et al. He II λ4686 EMISSION FROM THE MASSIVE BINARY SYSTEM IN η CAR: CONSTRAINTS TO THE ORBITAL ELEMENTS AND THE NATURE OF THE PERIODIC MINIMA , 2016, The Astrophysical Journal.
[33] A. Pollock,et al. A COORDINATED X-RAY AND OPTICAL CAMPAIGN OF THE NEAREST MASSIVE ECLIPSING BINARY, δ ORIONIS Aa. IV. A MULTIWAVELENGTH, NON-LTE SPECTROSCOPIC ANALYSIS , 2015, 1503.03476.
[34] F. P. Schloerb,et al. First Results with the IOTA3 Imaging Interferometer: The Spectroscopic Binaries λ Virginis and WR 140 , 2004, astro-ph/0401268.
[35] NOAO,et al. First Visual Orbit for the Prototypical Colliding-wind Binary WR 140 , 2011, 1111.1266.
[36] W. J. Tango,et al. γ2 Velorum: orbital solution and fundamental parameter determination with SUSI , 2007 .
[37] A. Moffat,et al. THE WOLF-RAYET BINARY V444 CYGNI UNDER THE SPECTROSCOPIC MICROSCOPE. I: IMPROVED CHARACTERISTICS OF THE COMPONENTS AND THEIR INTERACTION SEEN IN HE I , 1994 .
[38] S. Owocki,et al. Modelling the RXTE light curve of η Carinae from a 3D SPH simulation of its binary wind collision , 2008, 0805.1794.
[39] Gordon A. H. Walker,et al. Oscillations in the Massive Wolf-Rayet Star WR 123 with the MOST Satellite , 2005 .
[40] N. Morrell,et al. THE HD 5980 MULTIPLE SYSTEM: MASSES AND EVOLUTIONARY STATUS , 2014, 1408.0556.
[41] D. Sasselov,et al. WR 110: A SINGLE WOLF–RAYET STAR WITH COROTATING INTERACTION REGIONS IN ITS WIND? , 2011, 1105.0919.
[42] I. A. Bonnell,et al. Modelling accretion in protobinary systems , 1995 .
[43] J. Zorec,et al. The Unusual 2001 Periastron Passage in the “Clockwork” Colliding-Wind Binary WR 140 , 2003 .
[44] A. Moffat,et al. Magellanic Cloud WC/WO Wolf–Rayet stars – II. Colliding winds in binaries , 2001 .
[45] S. Owocki,et al. Modelling the Central Constant Emission X-ray component of η Carinae , 2016, 1603.01629.
[46] C. Evans,et al. Binary Interaction Dominates the Evolution of Massive Stars , 2012, Science.
[47] M. Audard,et al. Wind clumping and the wind-wind collision zone in the Wolf-Rayet binary gamma ² Velorum observations at high and low state. XMM-Newton observations at high and low state , 2004 .
[48] A. Moffat,et al. The Wolf-Rayet Binary V444 Cygni Under the Spectroscopic Microscope. II. Physical Parameters of the Wolf-Rayet Wind and the Zone of Wind Collision , 1997 .
[49] L. Wallace,et al. AN OPTICAL AND NEAR-INFRARED (2958–9250 Å) SOLAR FLUX ATLAS , 2011 .