Classification based on Gaussian-kernel Support Vector Machine with Adaptive Fuzzy Inference System

In this paper, we propose a new classification approach which combines the advantages of both Gaussian-kernel Support Vector Machine and Adaptive Fuzzy Inference System. Instead of generating a large number of candidate rules as in fuzzy classification, the proposed method adopts the decision trees to generate rules directly from training data. Decision trees provide architecture to generate fuzzy IF–THEN rules from the training data where the fuzzy parameters of the rules would be optimized using Genetic Algorithm. The Gaussian-kernel SVM will be used in the classification phase using the parameters obtained from Particle Swarm Optimization. Experimental results of the proposed approach has proved significantly better accuracy than other state-of-the-art classification methods by testing it on benchmark UCI datasets. Streszczenie. Zaproponowano nową metodę klasyfikacji łączącą zalety metod: Gaussian-Kernel Support Vector Machine i Adaptive Fuzzy Interference System. Wykorzystano drzewo decyzyjne do tworzenia zasad klasyfikacji bezpośrednio z danych treningowych. Parametry logiki rozmytej określano wykorxzystując algorytm genetyczny. A parametry SVM wykorzystując lagorytm mrówkowy. Metoda klasyfikacji bazująca na SVM I adaptacyjnej logice rozmytej

[1]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[2]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[3]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[4]  Mahmut Hekim,et al.  ANN-based classification of EEG signals using the average power based on rectangle approximation window , 2012 .

[5]  Jarosław Jajczyk Optimisation using a parallelised genetic algorithm on a personal computer , 2015 .

[6]  Hui Cao,et al.  Adaptive Neuro-Fuzzy Inference System-Based Pulverizing Capability Model for Running Time Assessment of Ball Mill Pulverizing System , 2013 .

[7]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[8]  Christopher J. C. Burges,et al.  A Tutorial on Support Vector Machines for Pattern Recognition , 1998, Data Mining and Knowledge Discovery.

[9]  André Carlos Ponce de Leon Ferreira de Carvalho,et al.  Multiclass SVM Model Selection Using Particle Swarm Optimization , 2006, 2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06).

[10]  Fatima Ardjani,et al.  Optimization of SVM MultiClass by Particle Swarm (PSO-SVM) , 2010, 2010 2nd International Workshop on Database Technology and Applications.

[11]  Heloisa A. Camargo,et al.  A Fuzzy Decision Tree Algorithm Based on C4.5 , 2013, SOCO 2013.

[12]  Kurt Hornik,et al.  Support Vector Machines in R , 2006 .

[13]  Vladimir Vapnik,et al.  The Nature of Statistical Learning , 1995 .

[14]  Guiyun Liu,et al.  An Integrated SVM and Fuzzy AHP Approach for Selecting Third Party Logistics Providers , 2012 .

[15]  A. Atiya,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.

[16]  Sheng Ding,et al.  PSO Parameters Optimization Based Support Vector Machines for Hyperspectral Classification , 2009, 2009 First International Conference on Information Science and Engineering.

[17]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[18]  Jin Zhao,et al.  A Novel Adaptive Fuzzy Controller Approach of Brushless DC Motors without Hall and Position Sensors , 2012 .