Robust Filtering for Systems with Stochastic Non-Linearities and Deterministic Uncertainties

Abstract In this paper, the robust finite-horizon filter design problem is considered for a class of discrete time-varying systems with both stochastic non-linearities and deterministic uncertainties. The description of the stochastic non-linearities is quite general, which comprises state-multiplicative noises and random sequences whose powers depend on either the sector-bound non-linear function of the state or the sign of a non-linear function of the state. The norm-bounded parameter uncertainties are allowed to enter both the system and the output matrices. The aim is to design a robust filter that guarantees an optimized upper bound on the state estimation error variance for all stochastic non-linearities and admissible deterministic uncertainties. The existence conditions for the desired robust filters are first derived and the filter parameters are then determined in terms of the solutions to two recursive Ricatti-like difference equations. A numerical simulation example is presented to show the applicability of the proposed method.

[1]  Shengyuan Xu,et al.  Reduced-order H∞ filtering for stochastic systems , 2002, IEEE Trans. Signal Process..

[2]  Hong Qiao,et al.  Robust filtering for bilinear uncertain stochastic discrete-time systems , 2002, IEEE Trans. Signal Process..

[3]  Nils Christophersen,et al.  Monte Carlo filters for non-linear state estimation , 2001, Autom..

[4]  Isaac Yaesh,et al.  Hinfinity control and filtering of discrete-time stochastic systems with multiplicative noise , 2001, Autom..

[5]  Zhi-Quan Luo,et al.  Finite-horizon robust Kalman filter design , 2001, IEEE Trans. Signal Process..

[6]  Keith J. Burnham,et al.  Robust filtering for a class of stochastic uncertain nonlinear time-delay systems via exponential state estimation , 2001, IEEE Trans. Signal Process..

[7]  H. Sorenson,et al.  Nonlinear Bayesian estimation using Gaussian sum approximations , 1972 .

[8]  Hong Wang,et al.  Fault detection and estimation for nonlinear systems with linear output structure , 2005 .

[9]  Fan Wang,et al.  Robust Kalman filters for linear time-varying systems with stochastic parametric uncertainties , 2002, IEEE Trans. Signal Process..

[10]  Ian R. Petersen,et al.  Performance analysis and controller synthesis for nonlinear systems with stochastic uncertainty constraints , 1996, Autom..

[11]  Lihua Xie,et al.  Robust filtering under stochastic parametric uncertainties , 2004, Autom..

[12]  Edwin Engin Yaz,et al.  State estimation of uncertain nonlinear stochastic systems with general criteria , 2001, Appl. Math. Lett..

[13]  D. Jacobson A general result in stochastic optimal control of nonlinear discrete-time systems with quadratic performance criteria , 1974 .

[14]  Fan Wang,et al.  Robust steady-state filtering for systems with deterministic and stochastic uncertainties , 2003, IEEE Trans. Signal Process..

[15]  Lihua Xie,et al.  Robust Kalman filtering for uncertain discrete-time systems , 1994, IEEE Trans. Autom. Control..

[16]  Ali H. Sayed,et al.  Multiobjective filter design for uncertain stochastic time-delay systems , 2004, IEEE Transactions on Automatic Control.

[17]  Lihua Xie,et al.  Design and analysis of discrete-time robust Kalman filters , 2002, Autom..

[18]  Hong Wang,et al.  Fault detection and diagnosis for general stochastic systems using B-spline expansions and nonlinear filters , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[19]  Bor-Sen Chen,et al.  Minimax robust deconvolution filters under stochastic parametric and noise uncertainties , 1994, IEEE Trans. Signal Process..

[20]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[21]  Uri Shaked,et al.  Robust discrete-time minimum-variance filtering , 1996, IEEE Trans. Signal Process..

[22]  James Lam,et al.  New approach to mixed H/sub 2//H/sub /spl infin// filtering for polytopic discrete-time systems , 2005, IEEE Transactions on Signal Processing.

[23]  Huijun Gao,et al.  A delay-dependent approach to robust H∞ filtering for uncertain discrete-time state-delayed systems , 2004, IEEE Trans. Signal Process..

[24]  Digital processing of speech signals : L. R. Rabiner and R. w. Schafer. Prentice-Hall, Englewood Cliffs. New Jersey , 1980, Pattern Recognit..