On the Computational Complexity of Predicting Dynamical Evolution of Large Agent Ensembles

We study global behavior of large ensembles of simple reactive agents. We do so by applying computational complexity tools to the analysis of formal complex systems and their dynamics. Since we are interested in the global dynamics and emerging behavior of large agent ensembles, rather than in an individual agent’s deliberation, learning or other cognitive abilities, the discrete complex systems we study are based on the communicating finite state machine (CFSM) abstraction. In particular, we show that counting the number of possible evolutions of a particular class of CFSMs is computationally intractable, even when those CFSMs are very severely restricted both in terms of an individual agent’s behavior (that is, the local update rules), and the inter-agent interaction pattern (that is, the underlying communication network topology). We use this abstract framework to formally prove the well-known intuition about multi-agent systems (MAS) that a complex and, in general, unpredictable global behavior may arise from coupling of rather simple local behaviors and interactions.

[1]  B. R.J,et al.  Counting and Classifying Attractors in High Dimensional Dynamical Systems , 1996 .

[2]  Christian M. Reidys,et al.  Elements of a theory of simulation II: sequential dynamical systems , 2000, Appl. Math. Comput..

[3]  Klaus Sutner,et al.  On the Computational Complexity of Finite Cellular Automata , 1995, J. Comput. Syst. Sci..

[4]  Catherine S. Greenhill The complexity of counting colourings and independent sets in sparse graphs and hypergraphs , 2000, computational complexity.

[5]  Christian M. Reidys,et al.  Sequential dynamical systems and applications to simulations , 2000, Proceedings 33rd Annual Simulation Symposium (SS 2000).

[6]  H. Gutowitz Cellular automata: theory and experiment : proceedings of a workshop , 1991 .

[7]  Harry B. Hunt,et al.  Gardens of Eden and Fixed Points in Sequential Dynamical Systems , 2001, DM-CCG.

[8]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[9]  B A Huberman,et al.  Evolutionary games and computer simulations. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Gul A. Agha,et al.  Concurrency vs. sequential interleavings in 1-D threshold cellular automata , 2004, 18th International Parallel and Distributed Processing Symposium, 2004. Proceedings..

[11]  Klaus Sutner,et al.  Computation theory of cellular automata , 1998 .

[12]  Max H. Garzon,et al.  Models of massive parallelism: analysis of cellular automata and neural networks , 1995 .

[13]  Dan Roth,et al.  On the Hardness of Approximate Reasoning , 1993, IJCAI.

[14]  John N. Tsitsiklis,et al.  On the predictability of coupled automata: an allegory about chaos , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[15]  Karel Culik,et al.  On Invertible Cellular Automata , 1987, Complex Syst..

[16]  Harry B. Hunt,et al.  The Complexity of Planar Counting Problems , 1998, SIAM J. Comput..

[17]  Mark Jerrum,et al.  Approximating the Permanent , 1989, SIAM J. Comput..

[18]  Julie A. Adams,et al.  Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence , 2001, AI Mag..

[19]  Harry B. Hunt,et al.  Predecessor and Permutation Existence Problems for Sequential Dynamical Systems , 2003, DMCS.

[20]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[21]  J. J. Hopfield,et al.  “Neural” computation of decisions in optimization problems , 1985, Biological Cybernetics.

[22]  U. S. Army Decision Procedures for Surjectivity and Injectivity of Parallel Maps for Tessellation Structures , 2007 .

[23]  Gustavo Deco,et al.  Finit Automata-Models for the Investigation of Dynamical Systems , 1997, Inf. Process. Lett..

[24]  T. E. Ingerson,et al.  Structure in asynchronous cellular automata , 1984 .

[25]  Mark Jerrum,et al.  Polynomial-Time Approximation Algorithms for the Ising Model , 1990, SIAM J. Comput..

[26]  Frederic Green,et al.  NP-Complete Problems in Cellular Automata , 1987, Complex Syst..

[27]  Pekka Orponen,et al.  Computational complexity of neural networks: a survey , 1994 .

[28]  Eric Goles,et al.  Cellular automata and complex systems , 1999 .

[29]  Christian M. Reidys,et al.  Elements of a theory of computer simulation I: Sequential CA over random graphs , 1999, Appl. Math. Comput..

[30]  Bruno Martin,et al.  A Geometrical Hierarchy on Graphs via Cellular Automata , 2002, Fundam. Informaticae.

[31]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[32]  Harry B. Hunt,et al.  Reachability problems for sequential dynamical systems with threshold functions , 2003, Theor. Comput. Sci..

[33]  Salil P. Vadhan,et al.  The Complexity of Counting in Sparse, Regular, and Planar Graphs , 2002, SIAM J. Comput..

[34]  Péter Gács,et al.  Deterministic computations whose history is independent of the order of asynchronous updating , 2001, ArXiv.

[35]  Eric Rémila,et al.  Simulations of graph automata , 1998 .

[36]  Stephen Wolfram,et al.  Theory and Applications of Cellular Automata , 1986 .

[37]  N. Goodwin Avenue,et al.  On Complexity of Counting Fixed Point Configurations in Certain Classes of Graph Automata , 2005 .

[38]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[39]  Christian M. Reidys,et al.  Discrete, sequential dynamical systems , 2001, Discret. Math..

[40]  M. Jerrum Two-dimensional monomer-dimer systems are computationally intractable , 1987 .

[41]  Zsuzsanna Róka,et al.  One-Way Cellular Automata on Cayley Graphs , 1993, Theor. Comput. Sci..

[42]  Gul A. Agha,et al.  Characterizing Configuration Spaces of Simple Threshold Cellular Automata , 2004, ACRI.

[43]  C. Barrett,et al.  DICHOTOMY RESULTS FOR SEQUENTIAL DYNAMICAL SYSTEMS , 2000 .

[44]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .