Multiple pollinator visits to Mimulus ringens (Phrymaceae) flowers increase mate number and seed set within fruits.

The timing and effectiveness of pollinator visitation to flowers is an important factor influencing mating patterns and reproductive success. Multiple pollinator probes to a flower may increase both the quantity and genetic diversity of progeny, especially if single probes deposit insufficient pollen for maximal seed set or if the interval between probes is brief. When pollen carryover is limited, sequential pollen loads may also differ markedly in sire representation. We hypothesized that these conditions help explain high levels of multiple paternity in Mimulus ringens fruits. We documented all bee visits to individual flowers, quantified resulting seed set, and determined paternity for 20 seeds per fruit. Most (76%) flowers received multiple probes, and the interval between probes was usually <30 min. Flowers probed multiple times produced 44% more seeds than flowers probed once. All fruits were multiply sired. Flowers receiving a single probe averaged 3.12 outcross sires per fruit, indicating that single probes deposit pollen from several donors. Multiple paternity was even greater after three or more probes (4.92 outcross sires), demonstrating that sequential visits bring pollen from donors not represented in the initial probe.

[1]  D. Campbell COMPETITION FOR POLLINATION , 1985 .

[2]  A. Snow,et al.  The timing and effectiveness of sequential pollinations in Hibiscus moscheutos , 2004, Oecologia.

[3]  R. Mitchell,et al.  INTERSPECIFIC COMPETITION FOR POLLINATION LOWERS SEED PRODUCTION AND OUTCROSSING IN MIMULUS RINGENS , 2005 .

[4]  L. Chittka,et al.  Cognitive Ecology of Pollination: Pollinator individuality: when does it matter? , 2001 .

[5]  J. Reithel,et al.  Pollinator-mediated selection on a flower color polymorphism in experimental populations of Antirrhinum (Scrophulariaceae). , 2001, American journal of botany.

[6]  B. Schmid,et al.  Effects of population size and pollen diversity on reproductive success and offspring size in the narrow endemic Cochlearia bavarica (Brassicaceae). , 2002, American journal of botany.

[7]  Michele R. Dudash,et al.  Pollen Limitation of Plant Reproduction: Pattern and Process , 2005 .

[8]  M. Clegg,et al.  First-pollination primacy and pollen selection in the morning glory, Ipomoea purpurea , 1987, Heredity.

[9]  H. J. Young,et al.  INFLUENCES OF FLORAL VARIATION ON POLLEN REMOVAL AND SEED PRODUCTION IN WILD RADISH , 1990 .

[10]  C. Ivey,et al.  Variation in pollinator effectiveness in swamp milkweed, Asclepias incarnata (Apocynaceae). , 2003, American journal of botany.

[11]  C. Galen,et al.  POLLINATION QUALITY, SEED SET, AND FLOWER TRAITS IN POLEMONIUM VISCOSUM: COMPLEMENTARY EFFECTS OF VARIATION IN FLOWER SCENT AND SIZE , 1988 .

[12]  J. D. Karron,et al.  FITNESS CONSEQUENCES OF MULTIPLE PATERNITY IN WILD RADISH, RAPHANUS SATIVUS , 1990, Evolution; international journal of organic evolution.

[13]  J. Kohn,et al.  Stigma behavior in Mimulus aurantiacus (Scrophulariaceae). , 1999, American journal of botany.

[14]  D. Marshall Nonrandom mating in wild radish : variation in pollen donor success and effects of multiple paternity among one- to six-donor pollinations , 1991 .

[15]  G. Bernasconi Seed paternity in flowering plants: an evolutionary perspective , 2003 .

[16]  R. Bertin FLORAL BIOLOGY, HUMMINGBIRD POLLINATION AND FRUIT PRODUCTION OF TRUMPET CREEPER (CAMPSIS RADICANS, BIGNONIACEAE) , 1982 .

[17]  S. Barrett,et al.  CONTRIBUTION OF CRYPTIC INCOMPATIBILITY TO THE MATING SYSTEM OF EICHHORNIA PANICULA TA (PONTEDERIACEAE) , 1993, Evolution; international journal of organic evolution.

[18]  A. Snow,et al.  Effects of sequential pollination on the success of "fast" and "slow" pollen donors in Hibiscus moscheutos (Malvaceae). , 2000, American journal of botany.

[19]  M. R. Dudash,et al.  MULTIPLE PATERNITY AND SELF‐FERTILIZATION IN RELATION TO FLORAL AGE IN MIMULUS GUTTATUS (SCROPHULARIACEAE) , 1991 .

[20]  John M. Bell,et al.  The influence of Mimulus ringens floral display size on pollinator visitation patterns , 2004 .

[21]  J. D. Karron,et al.  The influence of population density on outcrossing rates in Mimulus ringens , 1995, Heredity.

[22]  J. Thomson,et al.  DIFFERENTIAL SUCCESS OF POLLEN DONORS IN A SELF‐COMPATIBLE LILY , 1993, Evolution; international journal of organic evolution.

[23]  K. Karoly,et al.  POLLINATOR LIMITATION IN THE FACULTATIVELY AUTOGAMOUS ANNUAL, LUPINUS NANUS (LEGUMINOSAE) , 1992 .

[24]  A. Snow POLLINATION DYNAMICS IN EPILOBIUM CANUM (ONAGRACEAE): CONSEQUENCES FOR GAMETOPHYTIC SELECTION. , 1986, American journal of botany.

[25]  N. Waser,et al.  The Evolution of Plant Mating Systems: Multilocus Simulations of Pollen Dispersal , 1987, The American Naturalist.

[26]  S. Barrett Mating strategies in flowering plants: the outcrossing-selfing paradigm and beyond. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[27]  M. V. Price,et al.  Experimental studies of pollen carryover: Hummingbirds and Ipomopsis aggregata , 1982, Oecologia.

[28]  R. Mitchell,et al.  Patterns of multiple paternity in fruits of Mimulus ringens (Phrymaceae). , 2005, American journal of botany.

[29]  Candace Galen,et al.  BUMBLE BEE POLLINATION AND FLORAL MORPHOLOGY: FACTORS INFLUENCING POLLEN DISPERSAL IN THE ALPINE SKY PILOT, POLEMONIUM VISCOSUM (POLEMONIACEAE) , 1989 .

[30]  J. D. Karron,et al.  Effects of environmental variation on fitness of singly and multiply sired progenies of Raphanus sativus (Brassicaceae) , 1993 .

[31]  D. Campbell Multiple paternity in fruits of Ipomopsis aggregata (Polemoniaceae). , 1998, American journal of botany.

[32]  M. V. Price,et al.  Experimental studies of pollen carryover: effects of floral variability in Ipomopsis aggregata , 1984, Oecologia.

[33]  C. Ritland,et al.  VARIATION OF SEX ALLOCATION AMONG EIGHT TAXA OF THE MIMULUS GUTTATUS SPECIES COMPLEX (SCROPHULARIACEAE) , 1989 .

[34]  L. Harder,et al.  Pollen Dispersal and Mating Patterns in Animal-Pollinated Plants , 1996 .

[35]  N. Ellstrand,et al.  PATTERNS OF MULTIPLE PATERNITY IN POPULATIONS OF RAPHANUS SATIVUS , 1986, Evolution; international journal of organic evolution.

[36]  A. Bateman Cryptic self-incompatibility in the wallflower: Cheiranthus cheiri L. , 1956, Heredity.

[37]  K. Ritland,et al.  Modes of self‐fertilization in Mimulus guttatus (Scrophulariaceae): a field experiment , 1994 .

[38]  R. Mitchell,et al.  The influence of floral display size on selfing rates in Mimulus ringens , 2004, Heredity.

[39]  N. Waser,et al.  Adaptive Significance of Ipomopsis Aggregata Nectar Production: Pollination Success of Single Flowers , 1992 .

[40]  M. Cruzan Postpollination Mechanisms Influencing Mating Patterns and Fecundity: An Example from Eichhornia paniculata , 1996, The American Naturalist.

[41]  D. G. Lloyd,et al.  Self- and Cross-Fertilization in Plants. I. Functional Dimensions , 1992, International Journal of Plant Sciences.

[42]  P. Davidar,et al.  Determinants of fruit and seed set in Pavonia dasypetala (Malvaceae) , 1984, Oecologia.

[43]  J. D. Karron,et al.  Outcrossing rates of individual Mimulus ringens genets are correlated with anther–stigma separation , 1997, Heredity.

[44]  C. Herrera Components of pollinator "quality": comparative analysis of a diverse insect assemblage , 1987 .

[45]  J. D. Karron,et al.  Comparison of pollinator flight movements and gene dispersal patterns in Mimulus ringens , 1995, Heredity.

[46]  K. Ritland CORRELATED MATINGS IN THE PARTIAL SELFER MIMULUS GUTTATUS , 1989, Evolution; international journal of organic evolution.

[47]  P. Beardsley,et al.  Patterns of evolution in Australian Mimulus and related genera (Phrymaceae~Scrophulariaceae): a molecular phylogeny using chloroplast and nuclear sequence data , 2005 .

[48]  N. Waser Competition for Hummingbird Pollination and Sequential Flowering in Two Colorado Wildflowers , 1978 .

[49]  Jerrold H. Zar,et al.  Field and laboratory methods for general ecology , 1984 .