All-Solid-State Batteries Using Rationally Designed Garnet Electrolyte Frameworks

Functioning bulk-type all-solid-state batteries in a practical form factor with composite positive electrodes, using Al-substituted Li7La3Zr2O12 (LLZO) as the solid electrolyte, have been demonstra...

[1]  Scott J. Litzelman,et al.  Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries , 2022, Nature Energy.

[2]  V. Thangadurai,et al.  A bird's-eye view of Li-stuffed garnet-type Li7La3Zr2O12 ceramic electrolytes for advanced all-solid-state Li batteries , 2019, Energy & Environmental Science.

[3]  Lei Cheng,et al.  Oriented porous LLZO 3D structures obtained by freeze casting for battery applications , 2019, Journal of Materials Chemistry A.

[4]  Lei Cheng,et al.  Solid-state electrolyte considerations for electric vehicle batteries , 2019, Sustainable Energy & Fuels.

[5]  M. Doeff,et al.  Structural Degradation of Layered Cathode Materials in Lithium-Ion Batteries Induced by Ball Milling , 2019, Journal of The Electrochemical Society.

[6]  Lucienne Buannic,et al.  Mechanical failure of garnet electrolytes during Li electrodeposition observed by in-operando microscopy , 2019, Journal of Power Sources.

[7]  Qian Sun,et al.  Mitigating the Interfacial Degradation in Cathodes for High-Performance Oxide-Based Solid-State Lithium Batteries. , 2019, ACS applied materials & interfaces.

[8]  Kun Fu,et al.  All-in-one lithium-sulfur battery enabled by a porous-dense-porous garnet architecture , 2018, Energy Storage Materials.

[9]  Yayuan Liu,et al.  Fundamental study on the wetting property of liquid lithium , 2018, Energy Storage Materials.

[10]  Kun Fu,et al.  3D lithium metal anodes hosted in asymmetric garnet frameworks toward high energy density batteries , 2018, Energy Storage Materials.

[11]  Haihui Wang,et al.  Perovskite Membranes with Vertically Aligned Microchannels for All‐Solid‐State Lithium Batteries , 2018, Advanced Energy Materials.

[12]  R. Murugan,et al.  Electrodes-electrolyte interfacial engineering for realizing room temperature lithium metal battery based on garnet structured solid fast Li+ conductors , 2018, Journal of Power Sources.

[13]  Kun Fu,et al.  Lithium-ion conductive ceramic textile: A new architecture for flexible solid-state lithium metal batteries , 2018, Materials Today.

[14]  Xiulin Fan,et al.  Interphase Engineering Enabled All-Ceramic Lithium Battery , 2018 .

[15]  Lei Wang,et al.  Enhanced electrochemical performance of bulk type oxide ceramic lithium batteries enabled by interface modification , 2018 .

[16]  Y. Chiang,et al.  Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytes , 2017 .

[17]  Venkatasubramanian Viswanathan,et al.  Review—Practical Challenges Hindering the Development of Solid State Li Ion Batteries , 2017 .

[18]  Eongyu Yi,et al.  Key parameters governing the densification of cubic-Li 7 La 3 Zr 2 O 12 Li + conductors , 2017 .

[19]  Xin Guo,et al.  Garnet-Type Fast Li-Ion Conductors with High Ionic Conductivities for All-Solid-State Batteries. , 2017, ACS applied materials & interfaces.

[20]  Kun Fu,et al.  Conformal, Nanoscale ZnO Surface Modification of Garnet-Based Solid-State Electrolyte for Lithium Metal Anodes. , 2017, Nano letters.

[21]  Yutao Li,et al.  Electrochemical Nature of the Cathode Interface for a Solid-State Lithium-Ion Battery: Interface between LiCoO2 and Garnet-Li7La3Zr2O12 , 2016 .

[22]  M. Finsterbusch Li 7 La 3 Zr 2 O 12 Interface Modification for Li Dendrite Prevention , 2016 .

[23]  Eongyu Yi,et al.  Flame made nanoparticles permit processing of dense, flexible, Li+ conducting ceramic electrolyte thin films of cubic-Li7La3Zr2O12 (c-LLZO) , 2016 .

[24]  Q. Ma,et al.  Li7La3Zr2O12 Interface Modification for Li Dendrite Prevention. , 2016, ACS applied materials & interfaces.

[25]  Asma Sharafi,et al.  Characterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density , 2016 .

[26]  Venkataraman Thangadurai,et al.  Garnet-Type Solid-State Fast Li Ion Conductors for Li Batteries: Critical Review , 2014 .

[27]  Lei Cheng,et al.  The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes. , 2014, Physical chemistry chemical physics : PCCP.

[28]  Venkataraman Thangadurai,et al.  Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. , 2014, Chemical Society reviews.

[29]  A. Abouimrane,et al.  Solid Electrolyte Based on Succinonitrile and LiBOB Interface Stability and Application in Lithium Batteries , 2007 .

[30]  S. Sofie Fabrication of Functionally Graded and Aligned Porosity in Thin Ceramic Substrates With the Novel Freeze–Tape‐Casting Process , 2007 .

[31]  Michel Armand,et al.  The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors , 2004, Nature materials.

[32]  Yunhui Gong,et al.  High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture , 2019, Materials Today.