Burgess shale-type biotas were not entirely burrowed away

Burgess Shale–type biotas occur globally in the Cambrian record and offer unparalleled insight into the Cambrian explosion, the initial Phanerozoic radiation of the Metazoa. Deposits bearing except ...

[1]  A. Knoll,et al.  Geochemical evidence for widespread euxinia in the Later Cambrian ocean , 2011, Nature.

[2]  R. Gaines New Burgess Shale-Type Locality in the "Thin" Stephen Formation, Kootenay National Park, British Columbia: Stratigraphic and Paleoenvironmental Setting , 2011 .

[3]  M. Droser,et al.  The paleoredox setting of Burgess Shale-type deposits , 2010 .

[4]  Andrew H Knoll,et al.  Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish , 2010, Proceedings of the National Academy of Sciences.

[5]  M. G. Mángano,et al.  A new Burgess Shale–type assemblage from the “thin” Stephen Formation of the southern Canadian Rockies , 2010 .

[6]  Yuan-long Zhao,et al.  Bioturbation in Burgess Shale-type Lagerstatten - Case study of trace fossil-body fossil association from the Kaili Biota (Cambrian Series 3), Guizhou, China , 2010 .

[7]  C. Brett,et al.  Sequence stratigraphy, cyclic facies, and lagerstatten in the Middle Cambrian Wheeler and Marjum Formations, Great Basin, Utah , 2009 .

[8]  D. Canfield,et al.  Animal evolution, bioturbation, and the sulfate concentration of the oceans , 2009, Proceedings of the National Academy of Sciences.

[9]  D. Briggs,et al.  Cambrian Burgess Shale–type deposits share a common mode of fossilization , 2008 .

[10]  M. Webster,et al.  Microstratigraphy, Trilobite Biostratinomy, and Depositional Environment of the "Lower Cambrian" Ruin Wash Lagerstätte, Pioche Formation, Nevada , 2008 .

[11]  J. Zalasiewicz,et al.  Sedimentation of the Phyllopod Bed within the Cambrian Burgess Shale Formation of British Columbia , 2008, Journal of the Geological Society.

[12]  R. Bromley,et al.  Diminutive trace fossils in the Chengjiang Lagerstätte , 2007 .

[13]  S. Peters The problem with the Paleozoic , 2007, Paleobiology.

[14]  C. Marshall Explaining the Cambrian "Explosion" of Animals , 2006 .

[15]  M. Droser,et al.  New Approaches to Understanding the Mechanics of Burgess Shale-type Deposits: From the Micron Scale to the Global Picture , 2005 .

[16]  Yuan-long Zhao,et al.  Lower Cambrian Burgess Shale-type fossil associations of South China , 2005 .

[17]  D. Bottjer,et al.  Paleoecology of benthic metazoans in the Early Cambrian Maotianshan Shale biota and the Middle Cambrian Burgess Shale biota: evidence for the Cambrian substrate revolution , 2005 .

[18]  M. Droser,et al.  Paleoecology of the familiar trilobite Elrathia kingii: An early exaerobic zone inhabitant , 2003 .

[19]  M. Benton,et al.  Post-Cambrian closure of the deep-water slope-basin taphonomic window , 2003 .

[20]  M. Droser,et al.  Depositional Environments, Ichnology, and Rare Soft-Bodied Preservation in the Lower Cambrian Latham Shale, East Mojave , 2002 .

[21]  P. Orr Colonization of the deep‐marine environment during the early Phanerozoic: the ichnofaunal record , 2001 .

[22]  S. Jensen,et al.  A critical reappraisal of the fossil record of the bilaterian phyla , 2000, Biological reviews of the Cambridge Philosophical Society.

[23]  S. Morris The Cambrian "explosion": slow-fuse or megatonnage? , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[24]  C. Brett,et al.  Sequence stratigraphy and paleoecology of the Middle Cambrian Spence Shale in northern Utah and southern Idaho , 1997 .

[25]  B. Jørgensen,et al.  Complex burrows of the mud shrimp Callianassa truncata and their geochemical impact in the sea bed , 1996, Nature.

[26]  C. Brett,et al.  In situ benthos and paleo-oxygenation in the Middle Cambrian Burgess Shale, British Columbia, Canada , 1995 .

[27]  N. Butterfield Secular distribution of Burgess‐Shale‐type preservation , 1995 .

[28]  P. Allison,et al.  Exceptional fossil record: Distribution of soft-tissue preservation through the Phanerozoic , 1993 .

[29]  D. Bottjer,et al.  Trace Fossils and Ichnofabric in Leg 119 Cores , 1991 .

[30]  D. Bottjer,et al.  Oxygen-related biofacies in marine strata: an overview and update , 1991, Geological Society, London, Special Publications.

[31]  D. Bottjer,et al.  Ordovician increase in extent and depth of bioturbation: Implications for understanding early Paleozoic ecospace utilization , 1989 .

[32]  P. Allison The role of anoxia in the decay and mineralization of proteinaceous macro-fossils , 1988, Paleobiology.

[33]  D. Bottjer,et al.  Trends in depth and extent of bioturbation in Cambrian carbonate marine environments, western United States , 1988 .

[34]  S. Morris The community structure of the Middle Cambrian Phyllopod Bed lBurgess Shaler , 1986 .

[35]  C. W. Thayer Sediment-Mediated Biological Disturbance and the Evolution of Marine Benthos , 1983 .

[36]  D. Bottjer,et al.  Tiering in Suspension-Feeding Communities on Soft Substrata Throughout the Phanerozoic , 1982, Science.

[37]  M. Risk,et al.  Supershrimp: Deep Bioturbation in the Strait of Canso, Nova Scotia , 1976, Science.