First implosion experiments with cryogenic thermonuclear fuel on the National Ignition Facility

Non-burning thermonuclear fuel implosion experiments have been fielded on the National Ignition Facility to assess progress toward ignition by indirect drive inertial confinement fusion. These experiments use cryogenic fuel ice layers, consisting of mixtures of tritium and deuterium with large amounts of hydrogen to control the neutron yield and to allow fielding of an extensive suite of optical, x-ray and nuclear diagnostics. The thermonuclear fuel layer is contained in a spherical plastic capsule that is fielded in the center of a cylindrical gold hohlraum. Heating the hohlraum with 1.3 MJ of energy delivered by 192 laser beams produces a soft x-ray drive spectrum with a radiation temperature of 300 eV. The radiation field produces an ablation pressure of 100 Mbar which compresses the capsule to a spherical dense fuel shell that contains a hot plasma core 80 µm in diameter. The implosion core is observed with x-ray imaging diagnostics that provide size, shape, the absolute x-ray emission along with bangtime and hot plasma lifetime. Nuclear measurements provide the 14.1 MeV neutron yield from fusion of deuterium and tritium nuclei along with down-scattered neutrons at energies of 10–12 MeV due to energy loss by scattering in the dense fuel that surrounds the central hot-spot plasma. Neutron time-of-flight spectra allow the inference of the ion temperature while gamma-ray measurements provide the duration of nuclear activity. The fusion yield from deuterium–tritium reactions scales with ion temperature, which is in agreement with modeling over more than one order of magnitude to a neutron yield in excess of 1014 neutrons, indicating large confinement parameters on these first experiments.

[1]  J D Lindl,et al.  Tuning the implosion symmetry of ICF targets via controlled crossed-beam energy transfer. , 2009, Physical review letters.

[2]  Peter M. Celliers,et al.  Capsule implosion optimization during the indirect-drive National Ignition Campaign , 2010 .

[3]  Kunioki Mima,et al.  Random Phasing of High-Power Lasers for Uniform Target Acceleration and Plasma-Instability Suppression , 1984 .

[4]  O. Landen,et al.  The physics basis for ignition using indirect-drive targets on the National Ignition Facility , 2004 .

[5]  Otto L. Landen,et al.  Status of our understanding and modeling of x-ray coupling efficiency in laser heated hohlraums , 2001 .

[6]  P. B. Radha,et al.  Progress in hydrodynamics theory and experiments for direct-drive and fast ignition inertial confinement fusion , 2006 .

[7]  Gilbert W. Collins,et al.  Velocity and timing of multiple spherically converging shock waves in liquid deuterium. , 2011, Physical review letters.

[8]  Steven W. Haan,et al.  Three-dimensional HYDRA simulations of National Ignition Facility targets , 2001 .

[9]  Edward I. Moses,et al.  Experiments and multiscale simulations of|[nbsp]|laser propagation through ignition-scale|[nbsp]|plasmas , 2007 .

[10]  B. MacGowan,et al.  MEASUREMENTS OF SUPRATHERMAL ELECTRONS IN HOHLRAUM PLASMAS WITH X-RAY SPECTROSCOPY , 1998 .

[11]  P. B. Radha,et al.  Demonstration of the highest deuterium-tritium areal density using multiple-picket cryogenic designs on OMEGA. , 2010, Physical review letters.

[12]  Jay D. Salmonson,et al.  Prediction of ignition implosion performance using measurements of Low-deuterium surrogates , 2010 .

[13]  Jochen Schein,et al.  First laser–plasma interaction and hohlraum experiments on the National Ignition Facility , 2005 .

[14]  R. Betti,et al.  Publisher’s Note: “A measurable Lawson criterion and hydro-equivalent curves for inertial confinement fusion” [Phys. Plasmas 15, 102707 (2008)] , 2009 .

[15]  J. D. Kilkenny,et al.  Diagnostic systems for the National Ignition Facility (NIF) (invited) , 1995 .

[16]  J. Lindl Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain , 1995 .

[17]  M. J. Pivovaroff,et al.  Images of the laser entrance hole from the static x-ray imager at NIF. , 2010, The Review of scientific instruments.

[18]  Karen S. Anderson,et al.  Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinement , 2010 .

[19]  L. J. Atherton,et al.  The experimental plan for cryogenic layered target implosions on the National Ignition Facility--The inertial confinement approach to fusion , 2011 .

[20]  V. A. Smalyuk,et al.  Diagnosing and controlling mix in National Ignition Facility implosion experiments a) , 2011 .

[21]  Ramon Joe Leeper,et al.  Probing high areal-density cryogenic deuterium-tritium implosions using downscattered neutron spectra measured by the magnetic recoil spectrometera) , 2010 .

[22]  Edward I. Moses The National Ignition Facility and the Promise of Inertial Fusion Energy , 2010 .

[23]  Marilyn Schneider,et al.  Analysis of the National Ignition Facility ignition hohlraum energetics experiments a) , 2011 .

[24]  Peter A. Amendt,et al.  A simple time-dependent analytic model of the P2 asymmetry in cylindrical hohlraums , 1999 .

[25]  R. M. Franks,et al.  Demonstration of ignition radiation temperatures in indirect-drive inertial confinement fusion hohlraums. , 2010, Physical review letters.

[26]  P. Michel,et al.  Energy transfer between laser beams crossing in ignition hohlraums , 2009 .

[27]  Murakami,et al.  Experimental observation of laser-induced radiation heat waves. , 1990, Physical review letters.

[28]  David Strozzi,et al.  Suprathermal electrons generated by the two-plasmon-decay instability in gas-filled Hohlraums , 2008 .

[29]  P. B. Radha,et al.  High-areal-density fuel assembly in direct-drive cryogenic implosions. , 2008, Physical review letters.

[30]  J. Meyer-ter-Vehn,et al.  The physics of inertial fusion - Hydrodynamics, dense plasma physics, beam-plasma interaction , 2004 .

[31]  Hong,et al.  Higher Fusion Power Gain with Current and Pressure Profile Control in Strongly Shaped DIII-D Tokamak Plasmas. , 1996, Physical review letters.

[32]  J. Lawson SOME CRITERIA FOR A POWER PRODUCING THERMONUCLEAR REACTOR , 1957 .

[33]  J Edwards,et al.  Generalized measurable ignition criterion for inertial confinement fusion. , 2010, Physical review letters.

[34]  Robert L. Kauffman,et al.  Dante soft x-ray power diagnostic for National Ignition Facility , 2004 .

[35]  Edward I. Moses,et al.  The National Ignition Facility: Laser Performance and First Experiments , 2005 .

[36]  P Datte,et al.  Backscatter measurements for NIF ignition targets (invited). , 2010, The Review of scientific instruments.

[37]  Turner,et al.  Modeling and interpretation of Nova's symmetry scaling data base. , 1994, Physical review letters.

[38]  J. D. Moody,et al.  Laser–plasma interactions in ignition‐scale hohlraum plasmas , 1996 .

[39]  Peter A. Amendt,et al.  Design and modeling of ignition targets for the National Ignition Facility , 1995 .

[40]  L. Perkins,et al.  Higher fusion power gain with profile control in DIII-D tokamak plasmas , 1997 .

[41]  L. Divol,et al.  Backscatter reduction using combined spatial, temporal, and polarization beam smoothing in a long-scale-length laser plasma. , 2001, Physical review letters.

[42]  M. J. Edwards,et al.  Symmetric Inertial Confinement Fusion Implosions at Ultra-High Laser Energies , 2009, Science.

[43]  D. K. Bradley,et al.  Symmetry tuning via controlled crossed-beam energy transfer on the National Ignition Facilitya) , 2009 .

[44]  C. Sorce,et al.  Experimental demonstration of early time, hohlraum radiation symmetry tuning for indirect drive ignition experiments , 2011 .

[45]  Sergei O. Kucheyev,et al.  Condensed hydrogen for thermonuclear fusion , 2010 .

[46]  Daniel N. Baker,et al.  The role of symmetry in indirect‐drive laser fusion , 1995 .

[47]  L. Coldren,et al.  Radical beam/ion beam etching of GaAs , 1988 .

[48]  J. F. Briesmeister MCNP-A General Monte Carlo N-Particle Transport Code , 1993 .

[49]  Blain,et al.  Energetics of Inertial Confinement Fusion Hohlraum Plasmas , 1998 .

[50]  Joshua E. Rothenberg,et al.  Reduction of laser self-focusing in plasma by polarization smoothing , 1998 .

[51]  S. Sutton,et al.  National Ignition Facility laser performance status. , 2007, Applied optics.

[52]  M Keilhacker Fusion physics progress on the Joint European Torus (JET) , 1999 .

[53]  J. D. Moody,et al.  Symmetry tuning for ignition capsules via the symcap techniquea) , 2011 .

[54]  J. M. Mack,et al.  Diagnosing inertial confinement fusion gamma ray physics (invited). , 2010, The Review of scientific instruments.

[55]  Donald W. Phillion,et al.  Efficient Raman sidescatter and hot-electron production in laser-plasma interaction experiments , 1984 .

[56]  J D Lindl,et al.  Three-wavelength scheme to optimize hohlraum coupling on the National Ignition Facility. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  Robert Fedosejevs,et al.  Stimulated Raman backscatter from a magnetically confined plasma column , 1982 .

[58]  A. B. Langdon,et al.  On the dominant and subdominant behavior of stimulated Raman and Brillouin scattering driven by nonuniform laser beams , 1998 .

[59]  Jay D. Salmonson,et al.  Robustness studies of ignition targets for the National Ignition Facility in two dimensions , 2007 .

[60]  R. E. Marshak,et al.  Effect of Radiation on Shock Wave Behavior , 1958 .

[61]  Peter A. Amendt,et al.  Demonstration of time-dependent symmetry control in hohlraums by drive-beam staggering , 2000 .

[62]  R J Wallace,et al.  Observation of high soft x-ray drive in large-scale hohlraums at the National Ignition Facility. , 2010, Physical review letters.

[63]  Hiroshi Azechi,et al.  High-density compression experiments at ILE, Osaka , 1991 .

[64]  Riccardo Betti,et al.  A measurable Lawson criterion and hydro-equivalent curves for inertial confinement fusion , 2008 .

[65]  W. Kerner,et al.  High fusion performance from deuterium-tritium plasmas in JET , 1999 .

[66]  P. Michel,et al.  National Ignition Campaign Hohlraum energeticsa) , 2009 .

[67]  L. J. Atherton,et al.  Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility , 2010 .

[68]  J. Hoffer,et al.  Radioactively induced sublimation in solid tritium. , 1988, Physical review letters.