Robust measurement selection for biochemical pathway experimental design

As a general lack of quantitative measurement data for pathway modelling and parameter identification process, time-series experimental design is particularly important in current systems biology research. This paper mainly investigates state measurement/observer selection problem when parametric uncertainties are considered. Based on the extension of optimal design criteria, two robust experimental design strategies are investigated, one is the regularisation-based design method, and the other is Taguchi-based design approach. By implementing to a simplified IkappaBalpha - NF - kappaB signalling pathway system, two design approaches are comparatively studied. When large parametric uncertainty is present, by assuming that different parametric uncertainties are identical in scale, two methods tend to provide a similar uniform design result.

[1]  John J. Tyson,et al.  Modeling Molecular Interaction Networks with Nonlinear Ordinary Differential Equations , 2006 .

[2]  A. Hoffmann,et al.  The I (cid:1) B –NF-(cid:1) B Signaling Module: Temporal Control and Selective Gene Activation , 2022 .

[3]  Lih-Yuan Deng,et al.  Orthogonal Arrays: Theory and Applications , 1999, Technometrics.

[4]  Matthias Reuss,et al.  Optimal Experimental Design for Parameter Estimation in Unstructured Growth Models , 1994 .

[5]  Michael I. Jordan,et al.  Robust design of biological experiments , 2005, NIPS.

[6]  Terry Speed Statistics for Experimenters: Design, Innovation, and Discovery (2nd ed.) , 2006 .

[7]  田口 玄一,et al.  System of experimental design : engineering methods to optimize quality and minimize costs , 1987 .

[8]  Johannes P. Schlöder,et al.  Numerical methods for optimal control problems in design of robust optimal experiments for nonlinear dynamic processes , 2004, Optim. Methods Softw..

[9]  Hong Yue,et al.  Improving Data Fitting of a Signal Transduction Model by Global Sensitivity Analysis , 2007, 2007 American Control Conference.

[10]  Karen A. F. Copeland Design and Analysis of Experiments, 5th Ed. , 2001 .

[11]  Douglas B. Kell,et al.  The role of modeling in systems biology , 2005 .

[12]  Vipul Periwal,et al.  System Modeling in Cellular Biology: From Concepts to Nuts and Bolts , 2006 .

[13]  Laurent El Ghaoui,et al.  Robust Solutions to Least-Squares Problems with Uncertain Data , 1997, SIAM J. Matrix Anal. Appl..

[14]  Kwang-Hyun Cho,et al.  Optimal sampling time selection for parameter estimation in dynamic pathway modeling. , 2004, Bio Systems.

[15]  Kwang-Hyun Cho,et al.  Mathematical Modeling of the Influence of RKIP on the ERK Signaling Pathway , 2003, CMSB.

[16]  M Gyllenberg,et al.  Parameter identification in dynamical models of anaerobic waste water treatment. , 2002, Mathematical biosciences.

[17]  Sidney Addelman,et al.  trans-Dimethanolbis(1,1,1-trifluoro-5,5-dimethylhexane-2,4-dionato)zinc(II) , 2008, Acta crystallographica. Section E, Structure reports online.

[18]  Esther Seiden,et al.  On Orthogonal Arrays , 1966 .

[19]  E. Walter,et al.  Robust experiment design via maximin optimization , 1988 .

[20]  Sandro Macchietto,et al.  Statistical tools for optimal dynamic model building , 2000 .

[21]  Ursula Klingmüller,et al.  Modeling the Nonlinear Dynamics of Cellular Signal Transduction , 2004, Int. J. Bifurc. Chaos.

[22]  Hans Bock,et al.  A sequential approach for nonlinear optimum experimental design in DAE systems , 1999 .

[23]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[24]  P. Laycock,et al.  Optimum Experimental Designs , 1995 .

[25]  Hong Wang,et al.  Insights into the behaviour of systems biology models from dynamic sensitivity and identifiability analysis: a case study of an NF-kappaB signalling pathway. , 2006, Molecular bioSystems.

[26]  Anthony C. Atkinson,et al.  Optimum Experimental Designs , 1992 .

[27]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[28]  W. Näther Optimum experimental designs , 1994 .