Design tools for complex dynamic security systems.

The development of tools for complex dynamic security systems is not a straight forward engineering task but, rather, a scientific task where discovery of new scientific principles and math is necessary. For years, scientists have observed complex behavior but have had difficulty understanding it. Prominent examples include: insect colony organization, the stock market, molecular interactions, fractals, and emergent behavior. Engineering such systems will be an even greater challenge. This report explores four tools for engineered complex dynamic security systems: Partially Observable Markov Decision Process, Percolation Theory, Graph Theory, and Exergy/Entropy Theory. Additionally, enabling hardware technology for next generation security systems are described: a 100 node wireless sensor network, unmanned ground vehicle and unmanned aerial vehicle.

[1]  R. Olfati-Saber Ultrafast consensus in small-world networks , 2005, Proceedings of the 2005, American Control Conference, 2005..

[2]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[3]  Yaakov Bar-Shalom,et al.  Tracking with debiased consistent converted measurements versus EKF , 1993 .

[4]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[5]  Fredrik Gustafsson,et al.  Monte Carlo data association for multiple target tracking , 2001 .

[6]  Patrick Thiran,et al.  Connectivity in ad-hoc and hybrid networks , 2002, Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.

[7]  Leon O. Chua,et al.  Energy Concepts in the State-Space Theory of Nonlinear n-Ports: Part II - Losslessness , 1982 .

[8]  Silvia Giordano,et al.  Mobile ad hoc networks , 2002 .

[9]  François Baccelli,et al.  Impact of interferences on connectivity in ad hoc networks , 2005, IEEE/ACM Transactions on Networking.

[10]  Anuradha M. Annaswamy,et al.  Robust Adaptive Control , 1984, 1984 American Control Conference.

[11]  David Scott,et al.  Links and lies , 2003 .

[12]  Lucy Y. Pao,et al.  Multisensor Fusion Algorithms for Tracking , 1993, 1993 American Control Conference.

[13]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[14]  Y. Oshman Optimal sensor selection strategy for discrete-time state estimators , 1994 .

[15]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[16]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[17]  Alfred O. Hero,et al.  Multi-target Sensor Management Using Alpha-Divergence Measures , 2003, IPSN.

[18]  Vikram Krishnamurthy,et al.  Algorithms for optimal scheduling and management of hidden Markov model sensors , 2002, IEEE Trans. Signal Process..

[19]  Thia Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software , 2001 .

[20]  Murat Arcak,et al.  Constructive nonlinear control: a historical perspective , 2001, Autom..

[21]  Z. Jiang,et al.  Passivity-based control of nonlinear systems: a tutorial , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[22]  J. Willems Dissipative dynamical systems Part II: Linear systems with quadratic supply rates , 1972 .

[23]  O. Hernández-Lerma Adaptive Markov Control Processes , 1989 .

[24]  Lucy Y. Pao,et al.  Multisensor Fusion Algorithms for Tracking , 1993 .

[25]  Leon O. Chua,et al.  Energy concepts in the state-space theory of nonlinear n-ports: Part I-Passivity , 1981 .

[26]  Samuel S. Blackman,et al.  Design and Analysis of Modern Tracking Systems , 1999 .

[27]  S. Strogatz Exploring complex networks , 2001, Nature.

[28]  K.-H. Anthony,et al.  Hamilton’s action principle and thermodynamics of irreversible processes — a unifying procedure for reversible and irreversible processes , 2001 .

[29]  D. Mayne Nonlinear and Adaptive Control Design [Book Review] , 1996, IEEE Transactions on Automatic Control.

[30]  Richard M. Murray,et al.  Panel on Future Directions in Control, Dynamics, and Systems , 2000 .

[31]  R. Merris Laplacian matrices of graphs: a survey , 1994 .

[32]  Mehran Mesbahi,et al.  On maximizing the second smallest eigenvalue of a state-dependent graph Laplacian , 2006, IEEE Transactions on Automatic Control.

[33]  André Schiper,et al.  Probabilistic broadcast for flooding in wireless mobile ad hoc networks , 2003, 2003 IEEE Wireless Communications and Networking, 2003. WCNC 2003..

[34]  Wei Zhang,et al.  Epidemic spreading in percolation worlds , 2002 .

[35]  Vikram Krishnamurthy,et al.  Optimal sensor scheduling for Hidden Markov models , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[36]  I. Prigogine,et al.  Book Review: Modern Thermodynamics: From Heat Engines to Dissipative Structures , 1998 .

[37]  P. Moylan Implications of passivity in a class of nonlinear systems , 1974 .

[38]  Yun Li,et al.  Control of Perimeter Surveillance Wireless Sensor Networks via Partially Observable Marcov Decision Process , 2006, Proceedings 40th Annual 2006 International Carnahan Conference on Security Technology.

[39]  Antonio A. Alonso,et al.  Stabilization of distributed systems using irreversible thermodynamics , 2001, Autom..

[40]  Ralph Judson Smith Circuits, devices and systems : a first course in electrical engineering/ Ralph J. Smith , 1967 .

[41]  Sebastian Thrun,et al.  Particle Filters in Robotics , 2002, UAI.

[42]  Rajneesh Hegde Finding 3-shredders efficiently , 2006, TALG.

[43]  Rush D. Robinett,et al.  Lyapunov optimal saturated control for nonlinear systems , 1997 .

[44]  Lucy Y. Pao,et al.  A comparison of parallel and sequential implementations of a multisensor multitarget tracking algorithm , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[45]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[46]  Rush D. Robinett,et al.  Lyapunov optimal saturated control for nonlinear systems , 1997 .

[47]  E.K.P. Chong,et al.  Dynamic Sensor Management for Multisensor Multitarget Tracking , 2006, 2006 40th Annual Conference on Information Sciences and Systems.

[48]  P. Moylan,et al.  The stability of nonlinear dissipative systems , 1976 .

[49]  D.A. Castanon,et al.  Rollout Algorithms for Stochastic Scheduling Problems , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[50]  Joseph Cheriyan,et al.  Fast Algorithms for k-Shredders and k-Node Connectivity Augmentation , 1999, J. Algorithms.

[51]  A. Barabasi,et al.  Scale-free characteristics of random networks: the topology of the world-wide web , 2000 .

[52]  Alf Isaksson,et al.  On sensor scheduling via information theoretic criteria , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[53]  J. Hammersley,et al.  Percolation processes , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.

[54]  C.J.H. Mann,et al.  Control in an Information Rich World , 2004 .

[55]  Ying He,et al.  Sensor scheduling for target tracking in sensor networks , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[56]  Leonard Meirovitch,et al.  Methods of analytical dynamics , 1970 .

[57]  Patrick G. Xavier,et al.  The Umbra simulation framework as applied to building HLA federates , 2002, Proceedings of the Winter Simulation Conference.

[58]  D. Castañón Approximate dynamic programming for sensor management , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[59]  Dieter Fox,et al.  Real-time particle filters , 2004, Proceedings of the IEEE.

[60]  Edwin K. P. Chong,et al.  Sensor scheduling for target tracking: A Monte Carlo sampling approach , 2006, Digit. Signal Process..

[61]  Kevin Wise Control in an Information Rich World , 2001 .

[62]  K. Kastella,et al.  Particle filtering for multitarget detection and tracking , 2005, 2005 IEEE Aerospace Conference.

[63]  M. Fiedler Algebraic connectivity of graphs , 1973 .