Obtaining and maintaining polynomial-sized concept lattices

We use our definition of an underlying co-bipartite graph which encodes a given binary relation to propose a new approach to defining a sub-relation or incrementally maintaining a relation which will define only a polynomial number of concepts.

[1]  Anne Berry,et al.  Triangulated and Weakly Triangulated Graphs: Simpliciality in Vertices and Edges , 2001 .

[2]  A. Asensio Structural and Algorithmic Aspects of Chordal Graph Embeddings , 1996 .

[3]  Anne Berry,et al.  Generating All the Minimal Separators of a Graph , 1999, Int. J. Found. Comput. Sci..

[4]  A. Berry Désarticulation d'un graphe , 1998 .

[5]  Weifa Liang,et al.  Efficient Enumeration of all Minimal Separators in a Graph , 1997, Theor. Comput. Sci..

[6]  Srinivasan Parthasarathy,et al.  New Algorithms for Fast Discovery of Association Rules , 1997, KDD.

[7]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[8]  Anne Berry,et al.  Representing a concept lattice by a graph , 2002, Discret. Appl. Math..

[9]  Ryan B. Hayward,et al.  Weakly triangulated graphs , 1985, J. Comb. Theory B.

[10]  Ryan B. Hayward Generating weakly triangulated graphs , 1996 .

[11]  J. Bordat,et al.  ORTHOTREILLIS ET SÉPARABILITÉ DANS UN GRAPHE NON ORIENTÉ , 1999 .

[12]  Hong Shen,et al.  Separators Are as Simple as Cutsets , 1999, ASIAN.

[13]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[14]  Pinar Heggernes,et al.  Recognizing Weakly Triangulated Graphs by Edge Separability , 2000, Nord. J. Comput..

[15]  Hervé Leblanc,et al.  Galois lattice as a framework to specify building class hierarchies algorithms , 2000, RAIRO Theor. Informatics Appl..

[16]  Lotfi Lakhal,et al.  Designing Class Hierarchies of Object Database Schemas , 1997, BDA.

[17]  Jeremy P. Spinrad,et al.  Weakly chordal graph algorithms via handles , 2000, SODA '00.

[18]  Rokia Missaoui,et al.  A Framework for Incremental Generation of Frequent Closed Itemsets , 2002 .

[19]  Lhouari Nourine,et al.  A Fast Algorithm for Building Lattices , 1999, Inf. Process. Lett..

[20]  Dieter Kratsch,et al.  Listing All Minimal Separators of a Graph , 1998, SIAM J. Comput..