Obtaining and maintaining polynomial-sized concept lattices
暂无分享,去创建一个
[1] Anne Berry,et al. Triangulated and Weakly Triangulated Graphs: Simpliciality in Vertices and Edges , 2001 .
[2] A. Asensio. Structural and Algorithmic Aspects of Chordal Graph Embeddings , 1996 .
[3] Anne Berry,et al. Generating All the Minimal Separators of a Graph , 1999, Int. J. Found. Comput. Sci..
[4] A. Berry. Désarticulation d'un graphe , 1998 .
[5] Weifa Liang,et al. Efficient Enumeration of all Minimal Separators in a Graph , 1997, Theor. Comput. Sci..
[6] Srinivasan Parthasarathy,et al. New Algorithms for Fast Discovery of Association Rules , 1997, KDD.
[7] M. Golumbic. Algorithmic graph theory and perfect graphs , 1980 .
[8] Anne Berry,et al. Representing a concept lattice by a graph , 2002, Discret. Appl. Math..
[9] Ryan B. Hayward,et al. Weakly triangulated graphs , 1985, J. Comb. Theory B.
[10] Ryan B. Hayward. Generating weakly triangulated graphs , 1996 .
[11] J. Bordat,et al. ORTHOTREILLIS ET SÉPARABILITÉ DANS UN GRAPHE NON ORIENTÉ , 1999 .
[12] Hong Shen,et al. Separators Are as Simple as Cutsets , 1999, ASIAN.
[13] Robert E. Tarjan,et al. Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..
[14] Pinar Heggernes,et al. Recognizing Weakly Triangulated Graphs by Edge Separability , 2000, Nord. J. Comput..
[15] Hervé Leblanc,et al. Galois lattice as a framework to specify building class hierarchies algorithms , 2000, RAIRO Theor. Informatics Appl..
[16] Lotfi Lakhal,et al. Designing Class Hierarchies of Object Database Schemas , 1997, BDA.
[17] Jeremy P. Spinrad,et al. Weakly chordal graph algorithms via handles , 2000, SODA '00.
[18] Rokia Missaoui,et al. A Framework for Incremental Generation of Frequent Closed Itemsets , 2002 .
[19] Lhouari Nourine,et al. A Fast Algorithm for Building Lattices , 1999, Inf. Process. Lett..
[20] Dieter Kratsch,et al. Listing All Minimal Separators of a Graph , 1998, SIAM J. Comput..