Higher Order Statistics in a mmWave Propagation Environment

A thorough measurement campaign in an indoor environment at the millimeter-wave band is carried out with an aim at characterizing the short-term fading channel in terms of its higher-order statistics. The measurements are conducted in a variety of scenarios, with frequencies ranging from 55 to 65 GHz, in line-of-sight and non-line-of-sight conditions, and combinations of horizontal and vertical polarizations at both the transmitter and the receiver. A number of fading models are tested, namely Rayleigh, Rice, Nakagami-<inline-formula> <tex-math notation="LaTeX">${m}$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">$\mu $ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">$\kappa $ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">$\mu $ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">$\eta $ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">$\mu $ </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">$\eta $ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">$\kappa $ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">$\mu $ </tex-math></inline-formula>. The main second-order statistics under analysis are the level crossing rate (LCR) and average fade duration (AFD) both given per distance unit. From the experimental data, the parameters of these statistics are estimated, and the corresponding curves of the theoretical models are compared with the empirical ones and the best model is selected. Additionally, the study of the very general distribution, namely <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">$\eta $ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">$\kappa $ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">$\mu $ </tex-math></inline-formula>, is advanced, in which new expressions for time-/distance-domain LCR and AFD are derived using an envelope-based approach. Such an approach leads to integral-form formulations with much less computational complexity and computes rapidly compared with the already existing ones presented elsewhere, also given in the integral form. Furthermore, a series of expansion expression for the <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">$\eta $ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">$\kappa $ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">$\mu $ </tex-math></inline-formula> time-/distance-domain LCR is then derived that improves even further the computational time.

[1]  Theodore S. Rappaport,et al.  Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! , 2013, IEEE Access.

[2]  Sunil Kumar Khatri,et al.  Smart Farming – IoT in Agriculture , 2018, 2018 International Conference on Inventive Research in Computing Applications (ICIRCA).

[3]  Theodore S. Rappaport,et al.  28 GHz Millimeter-Wave Ultrawideband Small-Scale Fading Models in Wireless Channels , 2015, 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring).

[4]  J. Reig,et al.  Fading Evaluation in the 60GHz Band in Line-of-Sight Conditions , 2014 .

[5]  Thomas Zwick,et al.  Wideband channel sounder with measurements and model for the 60 GHz indoor radio channel , 2005, IEEE Transactions on Vehicular Technology.

[6]  Katsuyuki Haneda,et al.  Indoor short-range radio propagation measurements at 60 and 70 GHz , 2014, The 8th European Conference on Antennas and Propagation (EuCAP 2014).

[7]  Theodore S. Rappaport,et al.  In-building wideband partition loss measurements at 2.5 and 60 GHz , 2004, IEEE Transactions on Wireless Communications.

[8]  Peter F. M. Smulders,et al.  Statistical Characterization of 60-GHz Indoor Radio Channels , 2009, IEEE Transactions on Antennas and Propagation.

[9]  Theodore S. Rappaport,et al.  Proposal on Millimeter-Wave Channel Modeling for 5G Cellular System , 2016, IEEE Journal of Selected Topics in Signal Processing.

[10]  Moon-Soon Choi,et al.  Statistical Characteristics of 60 GHz Wideband Indoor Propagation Channel , 2005, 2005 IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications.

[11]  Y. Selen,et al.  Model-order selection: a review of information criterion rules , 2004, IEEE Signal Processing Magazine.

[12]  Tiee-Jian Wu,et al.  A comparative study of model selection criteria for the number of signals , 2008 .

[13]  Julien Sarrazin,et al.  Near-Body Shadowing Analysis at 60 GHz , 2015, IEEE Transactions on Antennas and Propagation.

[14]  Michel Daoud Yacoub,et al.  On the Phase Statistics of the κ-μ Process , 2016, IEEE Trans. Wirel. Commun..

[15]  P. Vainikainen,et al.  Statistical Channel Models for 60 GHz Radio Propagation in Hospital Environments , 2012, IEEE Transactions on Antennas and Propagation.

[16]  Andrea Giorgetti,et al.  Model Order Selection Based on Information Theoretic Criteria: Design of the Penalty , 2015, IEEE Transactions on Signal Processing.

[17]  W. Scanlon,et al.  Higher-order statistics for k-μ distribution , 2007 .

[18]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[19]  D. F. Hays,et al.  Table of Integrals, Series, and Products , 1966 .

[20]  Christoph F. Mecklenbräuker,et al.  In-Vehicle mm-Wave Channel Model and Measurement , 2014, 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall).

[21]  M.D. Yacoub,et al.  The α-η-μ and α-κ-μ Fading Distributions , 2006, 2006 IEEE Ninth International Symposium on Spread Spectrum Techniques and Applications.

[22]  Theodore S. Rappaport,et al.  Spatial and temporal characteristics of 60-GHz indoor channels , 2002, IEEE J. Sel. Areas Commun..

[23]  Fredrik Tufvesson,et al.  5G: A Tutorial Overview of Standards, Trials, Challenges, Deployment, and Practice , 2017, IEEE Journal on Selected Areas in Communications.

[24]  Lujain Dabouba,et al.  Millimeter Wave Mobile Communication for 5 G Cellular , 2017 .

[25]  R. S. Cole,et al.  An experimental study of the propagation of 55 GHz millimeter waves in an urban mobile radio environment , 1994 .

[26]  Jie Ding,et al.  Model Selection Techniques: An Overview , 2018, IEEE Signal Processing Magazine.

[27]  Lorenzo Rubio,et al.  Fading Evaluation in the mm-Wave Band , 2019, IEEE Transactions on Communications.

[28]  Michel Daoud Yacoub,et al.  Higher Order Statistics for the $\alpha - \eta - \kappa - \mu$ Fading Model , 2018, IEEE Transactions on Antennas and Propagation.

[29]  M.D. Yacoub,et al.  The κ-μ distribution and the η-μ distribution , 2007, IEEE Antennas and Propagation Magazine.

[30]  M.D. Yacoub,et al.  The $\alpha$-$\mu$ Distribution: A Physical Fading Model for the Stacy Distribution , 2007, IEEE Transactions on Vehicular Technology.

[31]  Michel Daoud Yacoub,et al.  The κ-μ phase-envelope joint distribution , 2008, 2008 IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications.

[32]  Yang Zhang,et al.  Measurement and Analytical Study of the Correlation Properties of Subchannel Fading for Noncontiguous Carrier Aggregation , 2014, IEEE Transactions on Vehicular Technology.

[33]  A. Seghouane The Akaike Information Criterion with Parameter Uncertainty , 2006, Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006..

[34]  Søren Holdt Jensen,et al.  Bayesian model comparison and the BIC for regression models , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.