Objective-trait-bias metaheuristics for design optimization of optical structures

Search algorithms play a crucial role in systematic design optimization of optical structures. Though many sophisticated methods appear in the literature, physically motivated guiding principles for the design and enhancement of such methods are few. We introduce such a guiding principle—an objective-trait-bias metaheuristic—and demonstrate its value in practice. Specifically, we present a case study in which application of an instance of this metaheuristic—a transmission-bias metaheuristic—leads to significantly better performing variants of a simple stochastic local search algorithm—restarted iterative best improvement—on a challenging design optimization problem—combinatorial design optimization of a multi-spatial-mode photonic crystal waveguide bend that preserves modal content.

[1]  Alexander Y. Piggott,et al.  Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer , 2015, Nature Photonics.

[2]  Ole Sigmund,et al.  Topology optimization for nano‐photonics , 2011 .

[3]  Jingbo Cai,et al.  Parallel microgenetic algorithm design for photonic crystal and waveguide structures. , 2003, Optics letters.

[4]  Vidya Ganapati,et al.  Light Trapping Textures Designed by Electromagnetic Optimization for Subwavelength Thick Solar Cells , 2013, IEEE Journal of Photovoltaics.

[5]  Shanhui Fan,et al.  Design methodology for compact photonic-crystal-based wavelength division multiplexers. , 2011, Optics letters.

[6]  Steven G. Johnson,et al.  Robust optimization of adiabatic tapers for coupling to slow-light photonic-crystal waveguides. , 2012, Optics express.

[7]  J. Joannopoulos,et al.  Compact Bends for Multi-mode Photonic Crystal Waveguides with High Transmission and Suppressed Modal Crosstalk References and Links , 2022 .

[8]  Peter Ingo Borel,et al.  Topology optimised photonic crystal waveguide intersections with high-transmittance and low crosstalk , 2006 .

[9]  Alice E. Smith,et al.  Penalty functions , 1996 .

[10]  Shanhui Fan,et al.  Understanding search behavior via search landscape analysis in design optimization of optical structures , 2016 .

[11]  Jakob S. Jensen,et al.  Topology optimization and fabrication of photonic crystal structures. , 2004, Optics express.

[12]  Kresten Yvind,et al.  Wavelength selective 3D topology optimized photonic crystal devices , 2013, CLEO: 2013.

[13]  Mukul Agrawal,et al.  Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks. , 2009, Optics express.

[14]  Eli Yablonovitch,et al.  Adjoint shape optimization applied to electromagnetic design. , 2013, Optics express.

[15]  Kresten Yvind,et al.  Topology optimized mode conversion in a photonic crystal waveguide , 2013, 2013 IEEE Photonics Conference.

[16]  Jesse Lu,et al.  Nanophotonic computational design. , 2013, Optics express.

[17]  Ole Sigmund,et al.  Inverse design of nanostructured surfaces for color effects , 2014 .

[18]  D J Richardson,et al.  Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers. , 2005, Optics express.

[19]  J. Marti,et al.  High-efficiency defect-based photonic-crystal tapers designed by a genetic algorithm , 2005, Journal of Lightwave Technology.

[20]  M. Douay,et al.  Photonic crystal fiber design by means of a genetic algorithm. , 2004, Optics express.

[21]  Alexander Y. Piggott,et al.  Inverse design and implementation of a wavelength demultiplexing grating coupler , 2014, Scientific Reports.

[22]  D.A.B. Miller,et al.  Systematic photonic crystal device design: global and local optimization and sensitivity analysis , 2006, IEEE Journal of Quantum Electronics.

[23]  Michelle L. Povinelli,et al.  Optimal Design of Aperiodic, Vertical Silicon Nanowire Structures for Photovoltaics , 2011 .

[24]  Steven G. Johnson,et al.  Optimization-based design of surface textures for thin-film Si solar cells — Are conventional Lambertian models relevant? , 2011, 2011 37th IEEE Photovoltaic Specialists Conference.

[25]  Michal Lipson,et al.  Low modal volume dipole-like dielectric slab resonator. , 2008, Optics express.

[26]  Jakob S. Jensen,et al.  Topology optimization of photonic crystal structures: a high-bandwidth low-loss T-junction waveguide , 2005 .

[27]  Steven G. Johnson,et al.  Transformation inverse design. , 2013, Optics express.

[28]  Jesse Lu,et al.  Inverse design of nanophotonic structures using complementary convex optimization , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[29]  Eli Yablonovitch,et al.  Lowering HAMR Near-Field Transducer Temperature via Inverse Electromagnetic Design , 2015, IEEE Transactions on Magnetics.

[30]  S. Osher,et al.  Maximizing band gaps in two-dimensional photonic crystals by using level set methods , 2005 .

[31]  Ole Sigmund,et al.  Time domain topology optimization of 3D nanophotonic devices , 2014 .

[32]  W. R. Frei,et al.  Geometry projection method for optimizing photonic nanostructures. , 2007, Optics letters.

[33]  A. Levi,et al.  Optimization of aperiodic dielectric structures , 2006 .

[34]  S. Fan,et al.  Accelerating simulation of ensembles of locally differing optical structures via a Schur complement domain decomposition. , 2014, Optics letters.

[35]  Jakob S. Jensen,et al.  Systematic design of photonic crystal structures using topology optimization: Low-loss waveguide bends , 2004 .

[36]  Sunkyu Yu,et al.  Directional emission from photonic crystal waveguide terminations using particle swarm optimization , 2010 .

[37]  Shanhui Fan,et al.  Highly Tailored Computational Electromagnetics Methods for Nanophotonic Design and Discovery , 2013, Proceedings of the IEEE.

[38]  Steven G. Johnson,et al.  Design and global optimization of high-efficiency thermophotovoltaic systems. , 2010, Optics express.

[39]  Jesse Lu,et al.  Objective-first design of high-efficiency, small-footprint couplers between arbitrary nanophotonic waveguide modes. , 2012, Optics express.