Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019

Summary Background The novel coronavirus SARS-CoV-2 is a newly emerging virus. The antibody response in infected patient remains largely unknown, and the clinical values of antibody testing have not been fully demonstrated. Methods A total of 173 patients with confirmed SARS-CoV-2 infection were enrolled. Their serial plasma samples (n = 535) collected during the hospitalization period were tested for total antibodies (Ab), IgM and IgG against SARS-CoV-2 using immunoassays. The dynamics of antibodies with the progress and severity of disease was analyzed. Findings Among 173 patients, the seroconversion rate for Ab, IgM and IgG was 93.1% (161/173), 82.7% (143/173) and 64.7% (112/173), respectively. Twelve patients who had not seroconverted were those only blood samples at the early stage of illness were collected. The seroconversion sequentially appeared for Ab, IgM and then IgG, with a median time of 11, 12 and 14 days, respectively. The presence of antibodies was < 40% among patients in the first 7 days of illness, and then rapidly increased to 100.0%, 94.3% and 79.8% for Ab, IgM and IgG respectively since day 15 after onset. In contrast, the positive rate of RNA decreased from 66.7% (58/87) in samples collected before day 7 to 45.5% (25/55) during days 15 to 39. Combining RNA and antibody detections significantly improved the sensitivity of pathogenic diagnosis for COVID-19 patients (p < 0.001), even in early phase of 1-week since onset (p = 0.007). Moreover, a higher titer of Ab was independently associated with a worse clinical classification (p = 0.006). Interpretation The antibody detection offers vital clinical information during the course of SARS-CoV-2 infection. The findings provide strong empirical support for the routine application of serological testing in the diagnosis and management of COVID-19 patients.

[1]  Min Kang,et al.  SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients , 2020, The New England journal of medicine.

[2]  Tiangang Liu,et al.  Clinical diagnosis of 8274 samples with 2019-novel coronavirus in Wuhan , 2020, medRxiv.

[3]  Suxin Wan,et al.  Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus pneumonia (NCP) , 2020, medRxiv.

[4]  Lei Liu,et al.  Evaluating the accuracy of different respiratory specimens in the laboratory diagnosis and monitoring the viral shedding of 2019-nCoV infections , 2020, medRxiv.

[5]  W. Liang,et al.  Clinical characteristics of 2019 novel coronavirus infection in China , 2020, medRxiv.

[6]  Yan Zhao,et al.  Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. , 2020, JAMA.

[7]  Ting Yu,et al.  Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study , 2020, The Lancet.

[8]  S. Lo,et al.  A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster , 2020, The Lancet.

[9]  Y. Hu,et al.  Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China , 2020, The Lancet.

[10]  Chuan Qin,et al.  Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. , 2019, JCI insight.

[11]  L. Poon,et al.  Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia : a prospective study , 2003 .