Non-uniform weighted average sampling and reconstruction in shift-invariant and wavelet spaces

[1]  Wenchang Sun,et al.  Average sampling in spline subspaces , 2002, Appl. Math. Lett..

[2]  Akram Aldroubi,et al.  Nonuniform Sampling and Reconstruction in Shift-Invariant Spaces , 2001, SIAM Rev..

[3]  T. Strohmer Numerical analysis of the non-uniform sampling problem , 2000, math/0010242.

[4]  K. Gröchenig,et al.  Beurling-Landau-type theorems for non-uniform sampling in shift invariant spline spaces , 2000 .

[5]  Wenchang Sun,et al.  On the sampling theorem for wavelet subspaces , 1999 .

[6]  Martin Vetterli,et al.  Oversampled filter banks , 1998, IEEE Trans. Signal Process..

[7]  H. Feichtinger,et al.  Exact iterative reconstruction algorithm for multivariate irregularly sampled functions in spline-like spaces: The $L^p$-theory , 1998 .

[8]  P. P. Vaidyanathan,et al.  Generalized sampling theorems in multiresolution subspaces , 1997, IEEE Trans. Signal Process..

[9]  D. Walnut Nonperiodic Sampling of Bandlimited Functions on Unions of Rectangular Lattices , 1995 .

[10]  A. Aldroubi,et al.  Sampling procedures in function spaces and asymptotic equivalence with shannon's sampling theory , 1994 .

[11]  Xiang-Gen Xia,et al.  On sampling theorem, wavelets, and wavelet transforms , 1993, IEEE Trans. Signal Process..

[12]  J. Benedetto Irregular sampling and frames , 1993 .

[13]  A. Aldroubi,et al.  Families of wavelet transforms in connection with Shannon's sampling theory and the Gabor transform , 1993 .

[14]  K. Gröchenig RECONSTRUCTION ALGORITHMS IN IRREGULAR SAMPLING , 1992 .

[15]  Gilbert G. Walter,et al.  A sampling theorem for wavelet subspaces , 1992, IEEE Trans. Inf. Theory.

[16]  C. Chui Wavelets: A Tutorial in Theory and Applications , 1992 .

[17]  H. Feichtinger,et al.  Iterative reconstruction of multivariate band-limited functions from irregular sampling values , 1992 .

[18]  A. Zayed On Kramer's sampling theorem associated with general Strum-Liouville problems and Lagrange interpolation , 1991 .

[19]  H. Feichtinger Generalized Amalgams, With Applications to Fourier Transform , 1990, Canadian Journal of Mathematics.

[20]  J. Stewart,et al.  Amalgams of $L^p$ and $l^q$ , 1985 .

[21]  L. Ahlfors Complex Analysis , 1979 .

[22]  A. J. Jerri The Shannon sampling theorem—Its various extensions and applications: A tutorial review , 1977, Proceedings of the IEEE.