Superconvergence in a DPG method for an ultra-weak formulation

In this work we study the DPG method with ultra-weak variational formulation for a reaction-diffusion problem. We improve existing a priori convergence results by sharpening an approximation result for the numerical flux. By duality arguments we show that higher convergence rates for the scalar field variable are obtained if the polynomial order of the corresponding approximation space is increased by one. Furthermore, we introduce a simple elementwise postprocessing of the solution and prove superconvergence. Numerical experiments indicate that the obtained results are valid beyond the underlying model problem.

[1]  Rolf Stenberg,et al.  Postprocessing schemes for some mixed finite elements , 1991 .

[2]  Jay Gopalakrishnan,et al.  Convergence rates of the DPG method with reduced test space degree , 2014, Comput. Math. Appl..

[3]  Carsten Carstensen,et al.  Breaking spaces and forms for the DPG method and applications including Maxwell equations , 2015, Comput. Math. Appl..

[4]  Weifeng Qiu,et al.  An analysis of the practical DPG method , 2011, Math. Comput..

[5]  Francisco-Javier Sayas,et al.  A PROJECTION-BASED ERROR ANALYSIS OF HDG METHODS , 2010 .

[6]  Carsten Carstensen,et al.  A Posteriori Error Control for DPG Methods , 2014, SIAM J. Numer. Anal..

[7]  Bo Dong,et al.  A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems , 2008, Math. Comput..

[8]  Victor M. Calo,et al.  A class of discontinuous Petrov-Galerkin methods. Part IV: The optimal test norm and time-harmonic wave propagation in 1D , 2011, J. Comput. Phys..

[9]  Leszek Demkowicz,et al.  A class of discontinuous Petrov–Galerkin methods. II. Optimal test functions , 2011 .

[10]  F. Li,et al.  Hybridization and Postprocessing Techniques for Mixed Eigenfunctions , 2010, SIAM J. Numer. Anal..

[11]  Leszek F. Demkowicz,et al.  Analysis of the DPG Method for the Poisson Equation , 2011, SIAM J. Numer. Anal..

[12]  Leszek Demkowicz,et al.  A Class of Discontinuous Petrov–Galerkin Methods. Part I: The Transport Equation , 2010 .

[13]  NORBERT HEUER,et al.  A Robust DPG Method for Singularly Perturbed Reaction-Diffusion Problems , 2017, SIAM J. Numer. Anal..

[14]  Norbert Heuer,et al.  Robust DPG Method for Convection-Dominated Diffusion Problems , 2013, SIAM J. Numer. Anal..

[15]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[16]  Haiying Wang,et al.  Superconvergent discontinuous Galerkin methods for second-order elliptic problems , 2009, Math. Comput..

[17]  Leszek F. Demkowicz,et al.  A primal DPG method without a first-order reformulation , 2013, Comput. Math. Appl..

[18]  Jay Gopalakrishnan Five lectures on DPG methods , 2013 .

[19]  Leszek Demkowicz,et al.  A class of discontinuous Petrov-Galerkin methods. Part III , 2012 .

[20]  Rob Stevenson,et al.  A robust Petrov-Galerkin discretisation of convection-diffusion equations , 2014, Comput. Math. Appl..

[21]  ROB STEVENSON,et al.  The completion of locally refined simplicial partitions created by bisection , 2008, Math. Comput..

[22]  Norbert Heuer,et al.  A Time-Stepping DPG Scheme for the Heat Equation , 2016, Comput. Methods Appl. Math..

[23]  Leszek Demkowicz,et al.  An Overview of the Discontinuous Petrov Galerkin Method , 2014 .