Some properties on the tensor product of graphs obtained by monogenic semigroups

Abstract In Das et al. (2013) [8], a new graph Γ ( S M ) on monogenic semigroups S M (with zero) having elements { 0 , x , x 2 , x 3 , … , x n } has been recently defined. The vertices are the non-zero elements x , x 2 , x 3 , … , x n and, for 1 ⩽ i , j ⩽ n , any two distinct vertices x i and x j are adjacent if x i x j = 0 in S M . As a continuing study, in Akgunes et al. (2014) [3], it has been investigated some well known indices (first Zagreb index, second Zagreb index, Randic index, geometric–arithmetic index, atom-bond connectivity index, Wiener index, Harary index, first and second Zagreb eccentricity indices, eccentric connectivity index, the degree distance) over Γ ( S M ) . In the light of above references, our main aim in this paper is to extend these studies over Γ ( S M ) to the tensor product. In detail, we will investigate the diameter, radius, girth, maximum and minimum degree, chromatic number, clique number and domination number for the tensor product of any two (not necessarily different) graphs Γ ( S M 1 ) and Γ ( S M 2 ) .

[1]  Frank DeMeyer,et al.  Zero divisor graphs of semigroups , 2005 .

[2]  A. Sinan Çevik,et al.  A new bound of radius with irregularity index , 2013, Appl. Math. Comput..

[3]  Xuding Zhu A SURVEY ON HEDETNIEMI'S CONJECTURE , 1998 .

[4]  I. Beck Coloring of commutative rings , 1988 .

[5]  L. Lovász,et al.  Applications of product colouring , 1974 .

[6]  Jonathan L. Gross,et al.  Handbook of graph theory , 2007, Discrete mathematics and its applications.

[7]  Caihua Wang,et al.  A Graph Design for Nine Graphs with Six Vertices and Nine Edges , 2012 .

[8]  Zsolt Tuza,et al.  Radius, diameter, and minimum degree , 1989, J. Comb. Theory, Ser. B.

[9]  László Lovász,et al.  Normal hypergraphs and the perfect graph conjecture , 1972, Discret. Math..

[10]  David F. Anderson,et al.  On the Zero-Divisor Graph of a Ring , 2008 .

[11]  Wilfried Imrich,et al.  Factoring cardinal product graphs in polynomial time , 1998, Discret. Math..

[12]  F. R. DeMeyer,et al.  The zero-divisor graph of a commutative semigroup , 2002 .

[13]  K. Das,et al.  On a graph of monogenic semigroups , 2013, Journal of Inequalities and Applications.

[14]  D. D. Anderson,et al.  Beck′s Coloring of a Commutative Ring , 1993 .

[15]  P. M. Weichsel THE KRONECKER PRODUCT OF GRAPHS , 1962 .

[16]  David F. Anderson,et al.  The Zero-Divisor Graph of a Commutative Ring☆ , 1999 .

[17]  Ghidewon Abay-Asmerom,et al.  Total Perfect Codes in Tensor Products of Graphs , 2008, Ars Comb..

[18]  Claude Tardif,et al.  Hedetniemi's Conjecture and the Retracts of a Product of Graphs , 2000, Comb..

[19]  B. Horoldagva,et al.  On Comparing Zagreb Indices of Graphs , 2012 .

[20]  Kinkar Chandra Das Proof of conjectures involving the largest and the smallest signless Laplacian eigenvalues of graphs , 2012, Discret. Math..

[21]  S. Hedetniemi Homomorphisms of graphs and automata , 1967 .

[22]  Xuding Zhu The fractional chromatic number of the direct product of graphs , 2002, Glasgow Mathematical Journal.